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When you bow deeply to the universe,
it bows back;
when you call out the name of God,
it echoes inside you.

- Morihei Ueshiba, The Art of Peace



Abstract

The construction of a quantum theory of gravity has fascinated generations of physi-
cist and mathematicians for over a century. Unfortunately, despite the many par-
tially successful attempts, no universally accepted solution has been obtained yet.
On the other hand, also black hole physics has been of particular interest among
the literature, since it naturally provides a forge to test and understand the role of
quantum mechanics in the description of gravitational interactions.

In this thesis we apply the techniques provided by both quantum field theory on
curved spacetimes and semiclassical gravity to the case of a spherically symmetric
static black hole, namely when the background is described by the Schwarzschild
metric. When a black hole evaporates, its area gradually decreases as the conse-
quence of a loss of mass. The rate of change of area is controlled by the Ray-
chaudhuri’s equation for a congruence of radial null outgoing geodesics, which ac-
tually describes the geometrical structure of the event horizon. We consider the
role of quantum gravitational radiation in black hole evaporation, estimating the
backreaction of the perturbation field on the background spacetime, by means of a
semiclassical contribution to the Raychaudhuri’s equation.

To achieve this result and after a brief introduction, we review the theory of
linearized gravity, focusing on its quantization in the algebraic framework, on the
construction of Hadamard quantum states and on the computation of the expec-
tation values of observables. Then, we adopt a perturbative approach to the Ray-
chaudhuri’s equation, focusing on the effects of backreaction along the event horizon,
which can be studied in terms of the expectation value of the stress-energy tensor
of quantized gravitational radiation. To this extent, we account for the divergences
of the two-point correlation functions of states, regularizing the local products of
perturbation fields by means of the point-splitting procedure, which is ensured by
the universality of the singularities of Hadamard states.

Under some physical assumption on the state and by some explicit computations,
we argue that for a radial null outgoing congruence, the trace anomaly of the renor-
malized stress-energy tensor contributes positively to the Raychaudhuri’s equation.
Such a result highlights that (initially static) spherically symmetric black holes can
evaporate by emission of gravitational radiation, which is due to the presence of
backreaction of the quantum field on the spacetime, and which can be related, at
large distance, to the presence of gravitational Hawking radiation.
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Sommario

La costruzione di una teoria quantistica della gravità ha affascinato generazioni di
fisici e matematici per più di un secolo. Sfortunatamente, nonostante diversi tenta-
tivi parzialmente riusciti, non è stata ancora trovata alcuna soluzione universalmente
accettata. D’altro canto, anche la fisica dei buchi neri ha suscitato particolare inter-
esse nella letteratura, dal momento che fornisce naturalmente una fucina per testare
e comprendere il ruolo della meccanica quantistica nella descrizione delle interazioni
gravitazionali.

In questa tesi applichiamo le tecniche proprie della teoria dei campi su spazitempi
curvi e della gravità semiclassica al caso di un buco nero statico e sfericamente
simmetrico, cioè quando lo spaziotempo di background è descritto da una metrica
di Schwarzschild. Quando un buco nero evapora, la sua area decresce gradual-
mente come conseguenza di una perdita di massa. Il tasso di variazione dell’area
è controllato dall’equazione di Raychaudhuri per una congruenza di geodetiche ra-
diali di tipo luce e uscenti, che descrive la struttura geometrica dell’orizzonte degli
eventi. In particolare, consideriamo il ruolo della radiazione gravitazionale quan-
tistica nell’evaporazione di un buco nero, stimando la controreazione della pertur-
bazione sullo spaziotempo di background, in termine di un contributo semiclassico
all’equazione di Raychaudhuri.

Per ottenere questo risultato e dopo una breve introduzione, riassumiamo la teo-
ria della gravità linearizzata, concentrandoci sulla sua quantizzazione nel contesto
algebrico, sulla costruzione degli stati quantistici di Hadamard e sul calcolo del val-
ore di aspettazione delle osservabili. In virtù di questo, analizziamo l’equazione di
Raychaudhuri da un punto di vista perturbativo, focalizzando la nostra attenzione
sugli effetti prodotti dalla controreazione lungo l’orizzonte degli eventi, i quali pos-
sono essere studiati in termini del valore di aspettazione del tensore energia-impulso
della radiazione gravitazionale quantistica. A tal fine, è necessario tener conto delle
divergenze delle funzioni di correlazione a due punti degli stati, regolarizzando i
prodotti locali delle perturbazioni attraverso la procedura di point-splitting, la quale
è assicurata dall’universalità delle singolarità degli stati di Hadamard.

Sotto qualche assunzione fisica sulla stato e attraverso qualche calcolo esplicito,
dimostriamo che per una congruenza di geodetiche radiali di tipo luce e uscenti,
l’anomalia di traccia del tensore energia-impulso rinormalizzato contribuisce positi-
vamente all’equazione di Raychaudhuri. Un contributo di questo tipo sottolinea che
buchi neri a simmetria sferica inizialmente statici possono evaporare per emissione
di radiazione gravitazionale, la quale è dovuta all’influenza della controreazione del
campo quantistico sullo spaziotempo, e che può essere legata, a grandi distanze, alla
presenza di radiazione di Hawking gravitazionale.
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Introduction

In this thesis we consider a new model of black hole evaporation, by the computation
of the backreaction of quantum gravitational radiation on a static and spherically
symmetric background, employing the techniques of both quantum field theory on
curved spacetimes and semiclassical gravity.

From a classical point of view, general relativity predicts black holes to have
an event horizon, namely a surface which can trap the geodesics within its internal
region such that nothing can escape from it. However, this well known consequence
of the Einstein theory does not account for quantum mechanics. A first insight on
this has been given by Hawking in the 70s [25], studying the presence of quantum
mechanical effects given by the combination of pair production mechanism and the
quantum tunnelling across the event horizon. Asymptotically this leads to the pro-
duction of a flux of particles from the black hole, whose frequency spectrum follows
the Bose-Einstein statistics. Actually, the power of this radiation can be computed
and assumed to be related to the rate of change of mass of the black hole, which
as a consequence of this escape of energy starts evaporating (i.e losing its mass).
Here the mechanism is assumed to be adiabatic, that is the spacetime is required
to be described by the Schwarzschild metric, with a different value of the mass as
time changes. Moreover, and despite its original description in terms of an emission
of photons, it has been shown that other particles can actually contribute to the
evaporation process [39, 40, 41]. However, all these considerations start from the
assumption that the evaporation actually occurs, neglecting the deep modifications
brought to the spacetime by such a process, while actually limiting the discussion
to a global point of view in regard to the flux of radiation emitted by the black hole
[8].

In this thesis we consider a local description of black hole evaporation, showing
that both gravitational and scalar Hawking radiation are predicted by quantum field
theory on curved spacetimes and semiclassical gravity, actually as a consequence of
the backreaction of quantum fields on a background spacetime, endowed with a
Schwarzschild (namely static and spherically symmetric) metric.

The unification of general relativity with the description of microscopic effects
given by quantum mechanics is far from being completely understood. However,
quantum field theory on curved spacetime works as a first, although rich, approxi-
mation to the complete solution, by studying the propagation of quantum fields on
a curved and fixed spacetime background. In this thesis, we consider the quanti-
zation of linearized gravity, thus building a model for the propagation of quantum
gravitational radiation around a spherically symmetric black hole. Then we consider
the semiclassical Einstein equation, as a second step towards a quantum description
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Introduction

of the gravitational interaction, assuming that the background may actually change
under the influence of the propagating quantum field, controlled by the expectation
value of its energy-tensor and leading to the so-called backreaction [22, 47, 23, 33].
To exploit the global relation between the semiclassical Einstein equation and the
production of Hawking radiation from black holes, we adopt a different point of view
from [25]. We study the influence of the backreaction on the geometrical proper-
ties of a congruence, i.e a bundle, of radial null outgoing geodesics, which describe
the behaviour of lights rays around the black hole, thus encoding the geometrical
structure of the horizon. The presence of evaporation can be established studying
the behaviour of θ, the expansion parameter, which is defined as the rate of cross-
sectional area growth of the congruence, while actually being related to the flux of
outgoing geodesics (i.e energy and particles) across the horizon. The dynamical evo-
lution of the expansion is described by the Raychaudhuri’s equation [48, 49], which
we study adopting a perturbative point of view, thus using quantum field theory
to investigate the contributions of quantum gravitational perturbations, which are
modelled by an external field propagating on the curved background [1]. By recall-
ing the quantization of linearized gravity [18, 24], we select a suitable state [31, 22,
1] to compute the backreaction of the field in terms of the semiclassical Einstein
equation [33, 47]

Gµν = 8πG⟨Tµν⟩ . (1)

which provides a nice way to link the information carried by the quantum theory,
encoded in the stress-energy tensor Tµν , with the geometry of the spacetime driven
by the Einstein tensor Gµν . To achieve such a result, we need to renormalize the
expectation value of Tµν , thus getting an expression for the quantum stress-energy
tensor which makes finite the contribution of the quantum fluctuations of the space-
time, while allowing us to write (1). Using the semiclassical Einstein equation, we
can control the rate of change of the expansion parameter on the horizon H by

dθ

dλ

∣∣∣
H
= −8πG⟨Tµν⟩kµkν , (2)

with kµ the vector field tangent to the geodesics congruence. However, the quantum
stress-energy tensor shows a trace anomaly, which is produced by the simultane-
ous requirement of Tµν being finite and covariantly conserved (thus obeying to the
principle of conservation of energy) and which depends only from the choice of the
model and of the spacetime background [1, 10, 6]. In our work we show that this
anomalous term, under some physical assumption on the quantum state, is the only
positive contribution in (2), thus giving

dθ

dλ

∣∣∣
H
> 0 .

We argue that for a initially static (i.e stable in the past) and spherically symmet-
ric black hole, the trace anomaly contribution leads to a growing flux of outgoing
geodesics through the event horizon. In this way, we see that the quantum modi-
fications induced on the spacetime by the gravitational perturbation act as source
of violation of the trapping capability of the horizon, allowing for the geodesics to
escape from it and thus producing flux of gravitational energy to the future infinity,
being responsible for the loss of mass of the black hole and its actual evaporation.
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Finally, we show the usual interpretation of Hawking radiation by relating this
flux of energy to the presence of radiation at large distance, to which we associate and
compute the luminosity, actually recovering the result previously found by Hawking
[25]

L =
α

πM2
.

It is worth to note that this procedure can be applied to any field theory, start-
ing from a different choice of the quantum stress-energy tensor and studying the
evaporation in terms of its trace anomaly contribution [10, 6].

The contents of this work

Part I In the first part of this work we consider the geometrical notions behind
the evaporation process of a stationary spherically symmetric black hole. We start
with a review of the fundamental contents of general relativity, by giving further
mathematical details regarding the causal structure on curved spacetimes. Here we
discuss the notion of globally hyperbolic spacetimes, which are the natural frame-
work to describe any classical or quantum field theory. Finally, we recall the descrip-
tion of static and spherically symmetric black holes in terms of the Schwarzschild
metric. As it is, this choice of the spacetime requires additional care, being ill-defined
on the event horizon. Indeed, we shall pay attention to its Kruskal extension, aimed
to achieved regularity and a more complete description (see [48, 49, 15] as the main
references on these topics).

After this brief introduction we consider the evaporation in terms of a positive
flux of gravitational energy across the event horizon. To this extent, we review the
geometrical notion of geodesic congruence [49, 8]. We consider the Raychaudhuri’s
equation, which accounts for the deformation of the congruence due to spacetime
curvature, by investigating the relation between the flux of geodesics and the rate
of change of the cross-sectional area of the bundle [48, 9]. On a perturbation-free
Kruskal background, we will explicitly argue that the Raychaudhuri’s equation cor-
rectly reproduces the stability of the event horizon and the absence of evaporation.
Finally, we consider a linear expansion of the background metric, investigating the
perturbation theory behind the Raychaudhuri’s equation and lying the foundation
for the description of the evaporation in terms of linearized quantum gravitational
radiation [28].

Part II In the second part of this work we review both the classical and quan-
tum aspects of linearized gravity on curved spacetime, being established that linear
perturbations give a satisfactory description of the evaporation by a second order
correction to the derivative of the flux of geodesics across the horizon. The first chap-
ter of this part is devoted to a classical discussion, starting from the linearization of
the Einstein tensor, which leads to the equation of motion (EoM) of a gravitational
wave on a general curved background [18, 5, 24]. Therefore, we exploit the gauge
symmetry carried by linearized diffeomorphisms, requiring that the perturbation
field satisfies the de Donder gauge condition. By this way, the equation of motions
can be put in a normally hyperbolic form, thus ensuring the existence of the ad-
vanced and retarded propagators as the fundamental solutions of the field equations.
This property also guarantees the existence and uniqueness of the solutions of the
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Cauchy problem associated to the EoM, once equipped with a suitable set of initial
data [4, 3, 24].

In order to achieve a fundamental quantum description of gravitational evapo-
ration, in the second chapter of this part we review the algebraic quantization of
linearized gravity on generally curved backgrounds. On a curved spacetime, there
are actually many problems related to the usual approach to the quantization in
terms of the construction and annihilation operators. To this extent, one need to
choose a suitable local coordinate frame and a local time function (if there exists) to
define the Fourier transform and thus compute the positive and negative frequencies
coefficients. Therefore, the former can be used to build the one-particle structure on
a suitable Hilbert space, achieving the second quantization while promoting the co-
efficients of the Fourier transform to operator on the Fock space. The essence of this
construction can be understood as an attempt to give the canonical commutation re-
lations while simultaneously choosing the representation of fields on the Fock space,
which however leads to a non-covariant formulation. The solution to this problem
is given by the algebraic approach, which splits the construction of the algebra of
fields from the choice of the representation on the Hilbert space, thus providing a
quantization scheme which holds for any choice of the spacetime background.

Contrary to the Klein-Gordon theory, reviewed in the first appendix, the quan-
tization of linearized gravity requires the additional care reserved to gauge theories.
Indeed, the quantization of the symplectic structure is bounded to the existence
of the fundamental propagators, or similarly of the conjugated momenta, which
has been ensured under a suitable gauge-fixing process [18, 1]. In order to resume
the freedom lost by the choice of the de Donder gauge, we discuss two different
approaches. On one hand, we recover the gauge symmetry by identifying the ob-
servables within the quotient of the space of solutions of the EoM with respect to
that of pure gauge fields, actually reconstructing the freedom while being on-shell
[18, 24]. This procedure allows us to get a gauge-invariant formulation of the no-
tion of observable, avoiding the introduction of other fields terms within the action
and by simply translating the gauge condition to restrict the choice of possible test
functions. However, we argue that this way reveals to be unsatisfactory in order to
construct the coinciding-point limit of observables made of products of fields, lead-
ing to undesired conditions which cannot be easily absorbed by the test functions.
To prevent this possible limitation, we consider the use of ghost fields to recover the
gauge symmetry, which can be achieved before employing the EoM, by means of the
action of a BRS operator, whose cohomology defines the space of gauge-invariant
observables [16, 17, 38]. In both the cases, the quantization can be achieved by
promoting the fields to generator of a ∗-algebra, whose structure is covariantly fixed
by the canonical commutation relations, independently from the choice of the rep-
resentation on the Fock space [31, 22].

Once that the algebraic structure of the theory is understood, we need to compare
this mathematical framework with the physical reality, which passes by a process of
measure, thus requiring the notion of quantum state. Therefore, we define the states
as functional acting on the algebra generated by fields. We discuss the definition of
quasi-free states, whose behaviour is completely fixed by the two-point correlation
function through the Wick theorem. In particular, we consider the restriction to
Hadamard quasi-free states, as the only ones to be physically admissible, mimicking
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the divergent behaviour of the vacuum state on the Minkowski spacetime and thus
allowing the recover of the one-particle structure of the theory. Those divergences
are universally described by the Hadamard parametrix (i.e independently from the
choice of the state itself), which can be suitably subtracted to regularize the expec-
tation value of observables. To this extent, we conclude this chapter by recalling the
point-splitting procedure, used to regularize the Wick monomials built by taking
the product of fields in the coinciding-point limit (see [31, 22, 23, 1] as the main
references).

Part III In the last part of this work we use the framework of algebraic quan-
tum field theory on curved spacetimes to describe the gravitational evaporation
on a stationary spherically symmetric background. By recalling the results of the
first part, we consider the description of the evaporation in terms of the perturbed
Raychaudhuri’s equation, whose contributions now depend from the quantum field
that describes the gravitational perturbation. To estimate the backreaction of the
quantum gravitational radiation, we employ the semiclassical Einstein equation [22,
47]. However, since the stress-energy tensor is quadratic in the fields and their
derivatives, its definition as a functional derivative of the action leads to a divergent
expectation value. For this reason, we pursue its renormalization, by subtracting
the Hadamard divergent contribution to obtain a well-defined prescription, while
exploiting the freedom of the point-splitting procedure to preserve the covariant
conservation property. Finally, we get a quantum prescription which also obeys to
the principle of conservation of energy [1, 23, 22]. However, this renormalization
technique modifies the trace of the tensor itself, thus producing an anomalous term,
which only depends from the choice of the background spacetime [1]. By a suitable
choice of the state (which is required to satisfy the same properties of the Unruh one
of the Klein-Gordon theory), we argue that the trace anomaly actually drives the
evaporation of the black hole, bringing a positive contribution to the Raychaudhuri’s
equation, and thus leading to a growth of the flux of outgoing gravitational energy
across the event horizon. Finally, we associate this flux of energy to the presence of
Hawking radiation at large distance from the black hole, of which we compute the
luminosity.

17





Part I

The geometrical interpretation
of black hole evaporation

19





Chapter 1

Geodesics congruence

1.1 Introduction

The main purpose of this thesis is to study the contribution of quantum gravitational
radiation to black hole evaporation. Usually, evaporation phenomena are studied
by means of Hawking radiation, namely as a positive flux of energy computed at
asymptotic distances from the black hole [8]. We present an alternative point of
view, by studying the effect of gravitational radiation on the structure of the event
horizon. In these terms, the evaporation of a black hole can be understood by the
presence of gravitational outgoing energy across the horizon itself. Before discussing
how quantum effects produced by the gravitational field may influence this process,
we need to investigate the classical details behind the relation between the curvature
of spacetime and the shape of family of a geodesic, namely a congruence.

In this chapter we review the basic notion of differential geometry and general
relativity, which will play a pivotal role in the entire work. Given all the geometrical
details, we shall discuss the notion of geodesic congruence and its relation with
black hole evaporation, whose geometrical property will be described by means of
the Raychaudhuri’s equation. We will end this introduction by giving a first outlook
towards a perturbative analysis of the Raychaudhuri’s equation, which will motivate
an analysis in the framework of linearized gravity on curved spacetimes.

1.2 Geometrical and physical preliminaries

We begin our discussion with a short review of all the geometrical and physical
notions, which will be often used during our thesis. Most of these definitions are
quite standard among the literature and they can be found for instance in [48, 9,
37].

The purpose of general relativity is to understand the relation between the grav-
itational field and the presence of matter or energy, by means of two fundamental
principles.

1. A body which is subject to the action of a gravitation field experiences a free-
falling motion along the spacetime, whose trajectory is described by a geodesic.

2. The presence of a gravitational field can be understood geometrically as the
effect of the curvature of spacetime, which is generated by the presence of
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Chapter 1. Geodesics congruence

either matter or energy.

We now introduce all the geometrical notions which allow a precise mathematical
description of the physical content of these principles.

We call spacetime a couple (M, g), with M being a smooth manifold and g a
Lorentzian metric of signature (−,+,+,+).

We associate to the manifold M a tangent bundle TM and its dual TM∗, the
cotangent bundle, which are respectively the space of vector fields and dual vector
(one-forms) fields on M.

To fix the notation, we briefly consider a vector field V ∈ TM and a 1-forms
field ω ∈ TM∗. Both can be explicitly written in terms of a basis, once that a
suitable local coordinate frame {xa} has been chosen, thus giving

V = V a(x)∂a, ω = ωa(x)dx
a .

The notion of vectors and 1-forms allow us to give the definition of a generic (h, l)
tensor field, as a pointwise multilinear map

T : (TM∗)h × (TM)l −→ C∞(M) ,

which is completely fixed by its action on the elements of the basis, i.e by its com-
ponents T i1...ih

j1...jl
.

When dealing with curved spacetimes, also the idea of derivation needs to be
revised. For instance, taking the derivative of V , requires the subtraction of two
vectors, of which the former needs to be parallel transported on the latter, starting
from a different point of the manifold. However, on general curved spacetimes there
is no translational invariance, hence, different paths on M leads to different results
of the derivative. The dependence from the transport direction is precisely described
by the covariant derivative ∇, whose action, when viewed as a differential operator,
depends on the geometrical nature of its argument. Indeed, given two vector fields
V ,U , the covariant derivative of V along the U -direction reads

∇UV = U b∇bV
a∂a = U b(∂bV

a + Γa
bcV

c)∂a , (1.1)

with ∇a∂b = Γc
ab∂a. Hence, we say that V is parallel transported along U if

∇UV = 0 . (1.2)

The coefficients of the connection Γa
bc and the metric g are related by the Levi-Civita

theorem. Indeed, given the metric-compatibility condition

∇agbc = 0 ,

there exists an unique symmetric connection, i.e Γa
bc = Γa

cb, satisfying

Γa
bc =

1

2
gad (∂bgcd + ∂cgbd − ∂dgbc) . (1.3)

In such a case Γa
bc are usually referred to as Christoffel symbols.

22



Chapter 1. Geodesics congruence

The relation between the curvature of the spacetime and the error made by
choosing two different paths of derivation, is described by the Riemann tensor. In-
deed, adopting the convention of [48], given a vector field V , the Riemann tensor is
defined as

R d
abc V

c .
= −(∇a∇b −∇b∇a)V

c .

By exploiting the definition of the covariant derivative (1.1), we get the components
of the Riemann tensor, expressed in terms of the Christoffel symbols (1.3)

R d
abc

.
= ∂bΓ

d
ac − ∂aΓ

d
bc + Γe

acΓ
d
eb − Γe

bcΓ
d
ea ,

which leads to
Rab

.
= R c

acb , R
.
= gabRab .

respectively called the Ricci tensor and Ricci curvature. Then, the Einstein tensor
can be defined as

Gab
.
= Rab −

1

2
Rgab ,

which satisfies the Bianchi identity ∇aGab = 0.
The stress-energy tensor Tab is a (0,2) symmetric, covariantly conserved tensor,

i.e ∇aTab = 0, which plays a pivotal role in general relativity. Indeed, it allows us
to implement principle 2, relating the presence of matter and energy with the shape
of spacetime curvature, by means of the Einstein field equation

Gab = 8πGTab , (1.4)

with G the Newtonian constant of gravitation. By multiplication of both members
of (1.4), for the inverse metric gab, we can equivalently state that

Rab = 8πG

(
Tab −

1

2
Tgab

)
. (1.5)

with T
.
= gabTab. Without matter or energy, (1.4) leads to the vacuum Einstein field

equation
Gab = 0 . (1.6)

As stressed before, the Einstein equation describes completely the dynamics of the
spacetime in terms of its solution g. Once the geometry of the spacetime is known,
the trajectory of a free falling body can be described by means of the notion of
geodesic.

We call geodesic a curve γ, whose tangent vector field k is parallel transported
along the curve itself. From definition (1.2), it follows that

ka∇ak
b = 0 , (1.7)

which is called the geodesics equation. This expression is actually well-posed, despite
k being a vector field defined only on γ. Indeed, prescription (1.7) involves only the
projection of the covariant derivative along the direction of k, evaluated along γ.

The geometrical requirement brought by (1.7) allows the interpretation of geodesics
as those curves, straight with respect to the spacetime curvature, that actually de-
scribe the natural behaviour of a free falling body, thus implementing principle 1 of
general relativity.
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Before entering all the mathematical details, we briefly discuss the physical mean-
ing behind the notion of causality. Let us consider two events s and s′, connected
by a curve γ with tangent vector field V . The causal relation between s and s′ can
be understood by means of the interval, which is defined as

∆s2
.
= gabV

aV b . (1.8)

We say that s and s′ are timelike, null or spacelike separated, if ∆s2 is respectively
less, equal or greater than zero for every point of γ between s and s′.1 This distinc-
tion has a deep physical consequence: if two events are spacelike separated, then
there can be no cause-and-effect relation between them. Indeed, any spacelike inter-
action between s and s′ would require a superluminal transmission, which is actually
forbidden by special and general relativity. For this reason, two events which are
either timelike or null separated are said to be causal. Finally, we note that, since
(1.8) is a scalar quantity, the separation between two events does not depend upon
the choice of the reference frame.

We can extend the the previous classification from events to curves, which will
play a fundamental role in the description of the causal structure of the spacetime.
Let γ be a curve, to which we associate a tangent vector field k. We say that γ is
timelike, null or spacelike, if gabk

akb is respectively less, equal or greater than zero,
for every point of the spacetime. Moreover, a curve is said causal if it is nowhere
spacelike.

In order to gain a simple distinction between past and future within the spacetime
(M, g), we require M to be time-orientable by assuming the existence of a global
timelike vector field t (which is highly non-unique). By means of t, for every point
of the spacetime we can describe the light cone associated to a timelike curve γ. We
consider the following definition [48, Ch. 8], [4].

1. A timelike curve γ, with tangent vector field k, is said future or past directed
if gabk

akb is respectively everywhere greater or less than zero. Allowing for the
equality, we trivially extend this definition to causal curves.

2. Let I, J two subsets of M such that I ⊊ J . A geodesic γ, defined in I, is
said inextensible if does not exist any other geodesic γ̃, defined in J , such that
γ = γ̃|I .

3. A subset Σ ⊂ M is called achronal if each timelike curve in (M, g) intersects
Σ at most once.

4. A subset Σ ⊂ M is called timelike, null or spacelike, if its points are respec-
tively all timelike, null or spacelike separated.

5. For any subset Σ ⊂ M, we call future domain of dependence D+
M(Σ) the

collection of all point q ∈ M such that every past inextensible causal curve
passing through q intersects Σ. Similarly, we can define the past domain of
dependence D−

M(Σ). We simply call domain of dependence the set DM(Σ)
.
=

D+
M(Σ) ∪D−

M(Σ).

1The possibility to have ∆s2 < 0 comes from the fact that spacetimes are endowed with
Lorentzian metrics, which have indefinite signature.
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6. For any subset Σ ⊂ M, we call causal future J+
M(Σ) the collection of all point

q ∈ M such that there exists a future directed causal curve γ : I → M, for
which γ(0) = p and γ(1) = q, with p ∈ Σ. Similarly, we can define the causal
past J−

M(Σ). Finally, we simply denote JM(Σ)
.
= J+

M(Σ) ∪ J−
M(Σ)

Intuitively, the causal future of a surface Σ contains all the points of the spacetime
which are causally related to any point of Σ, i.e the union of the light cones generated
by every point of Σ. On the other hand, the domain of dependence contains only
those points which are causally related to every point of Σ. We sketch an example
of D+

M(Σ) and J+
M(Σ) in figure 1.1, to clarify this distinction.

Finally we introduce two definitions that will be very useful to construct an
initial value problem on (M, g).

1. Using the previous definitions, we call Cauchy surface any achronal subset
Σ ∈ M, such that DM(Σ) = M.

2. A time-oriented spacetime (M, g) is said globally hyperbolic if and only if
admits at least one Cauchy surface.

In the following chapters, we will exploit these geometrical notions to set up an initial
value problem for a quantum field on a curved background. Indeed, the choice of
a spacelike Cauchy surface will provide the idea of a surface with “constant time”,
with respect to a set of initial conditions can be fixed. By this way, it it will be
possible to ensure the existence and uniqueness of solutions to the field equation, by
also allowing the construction of the propagators of the theory.

Σ

M

D+
M(Σ)

(a) The future domain of dependence of Σ

Σ

M

J+
M(Σ)

(b) The causal future of Σ

Figure 1.1: Causal structure

1.3 From the Schwarzschild solution to the Kruskal ex-
tension

In this section we briefly review the case of a static spherically symmetric black hole,
described by the Schwarzschild metric and by its Kruskal extension.

Let us consider a spacetime (M, g), which satisfies the vacuum Einstein equation
(1.6). Given T = 0 then, (1.5) gives

Rab = 0 . (1.9)
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This leads to a set of second order partial differential equations with the metric g
as a solution, which a priori could be difficult to solve.

The situation can be definitely simplified, provided some ansatz on g. Indeed,
Birkhoff’s theorem states that, for a spherically symmetric spacetime, (1.9) has
unique solution represented by the Schwarzschild metric [48], which reads

ds2 = −
(
1− Rs

r

)
dt2 +

(
1− Rs

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 . (1.10)

This metric is a solution of the vacuum Einstein equation (1.9) for Rs < r < +∞.
Actually, it describes a spacetime with a static spherically symmetric black-hole of
mass M . The length Rs = 2MG is called Schwarzschild radius, and it identifies an
hypersurface H known as the event horizon.

When dealing with (1.10), it becomes clear that g is not well defined on H, since
it shows a singularity for r → Rs. We discuss now an extension of the Schwarzschild
spacetime, which removes the singularity on the event horizon and leads to a space-
time well-defined on H and beyond, being regular on 0 < r < +∞. This discussion
will motivate the following distinction. On one hand, the event horizon represents a
coordinate singularity, since it can be removed by a suitable coordinate transforma-
tion. From a physical point of view, this means that an observer would take a finite
proper time in order to reach H from the outside [9, Ch. 5]. On the other hand, the
point r = 0 represents a physical singularity, which cannot be removed in any way.

For the rest of this section we discuss how to bypass the coordinate singularity in
H, showing that the Schwarzschild spacetime can be extended to the more complete
solution called the Kruskal spacetime. Immediately, we can observe that the angular
part of the Schwarzschild metric (1.10) is simply the metric of a 2-sphere, which is
well-behavioured on H. Hence, we consider the two-dimensional restriction of g with
coordinates (t, r), being the one that actually suffers under the limit r → Rs

ds22D = −
(
1− Rs

r

)
dt2 +

(
1− Rs

r

)−1

dr2 . (1.11)

We define the tortoise coordinate r∗

r∗
.
= r +Rs log(r/Rs − 1) , (1.12)

which satisfies
dr∗
dr

=

(
1− Rs

r

)−1

. (1.13)

The null coordinates u, v are given by

u
.
= t− r∗ ,

v
.
= t+ r∗ .

(1.14)

Using (1.14) together with (1.12), we can rewrite the metric (1.11) as

dŝ22D = −
(
1− Rs

r

)
dudv . (1.15)
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Starting from prescription (1.14), we can define the Kruskal null coordinates U , V

U
.
= −e−u/2Rs ,

V
.
= ev/2Rs ,

(1.16)

which, by substitution into (1.15), give

ds̃22D = −4R3
se

−r/Rs

r
dUdV , (1.17)

with the radial coordinate defined implicitly by

UV =

(
1− r

Rs

)
er/Rs .

Under the transformation (1.16), we have obtained a new metric (1.17), which is well-
defined on H. Once that the two-dimensional behaviour is known, the extension to
the four-dimensional case becomes straightforward, actually leading to

ds̃2 = −4R3
se

−r/Rs

r
dUdV + r2dθ2 + r2 sin2 θdφ2 . (1.18)

This result shows that, thanks to some coordinate transformation, it is possible to
map the Schwarzschild metric g, given by (1.10), to a new metric g̃, given by (1.18),
which is not afflicted by any singularity on the event horizon H, being regular for
r → Rs. However, through the extension of Schwarzschild solution we have gained
more than required. The extension (M̃, g̃), which is called Kruskal spacetime, is a
solution to the vacuum Einstein equation on 0 < r < +∞.

Before discussing the property of the Kruskal extension, we note that further
improvements can be obtained from (1.18), by mapping the null Kruskal coordinates
(U, V ) to a new set (T,R)

T =
1

2
(U + V ) ,

R =
1

2
(V − U) .

Since we will be interested in working with null geodesics, we do not discuss the
details of this procedure, which has particular importance in showing, for instance,
that the Kruskal solution mimics the asymptotic behaviour of the Minkowski space-
time. This property, is typically understood by means of a conformal mapping of
(1.18) into a bounded region, which is usually pictured by the Penrose diagram 1.4
[15, Ch. 5].

We end this section by briefly making some considerations on the properties of
the Kruskal extension, together with some useful definition.

1. In figure 1.2 every couple (U, V ) represents a two-sphere. We will usually refer
to the special case provided by the origin (0, 0) as a bifurcation sphere.

2. We call future and past horizon, the hypersurfaces H+ and H−, which can be
respectively obtained by taking the limit U → 0 and V → 0. We simply call
event horizon the union H = H+ ∪ H−, which can be obtained by evaluating
r = Rs, or equivalently, UV = 0.
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3. The null coordinates (U, V ) describe the light-cone structure of the Kruskal
spacetime, which is centered on the bifurcation sphere. This fact comes nat-
urally by observing that the radial null geodesics are all parallel to U or V .
Indeed, we call null outgoing geodesics the V -directed null geodesics, while null
ingoing geodesics those that are U -directed. See figure 1.3 for an example.

4. Regions II and III are respectively called black hole and white hole. Actually,
the physical singularity r = 0 is mapped into the equation UV = 1.

5. The Schwarzschild solution (1.10) can be recovered as a restriction of the
Kruskal spacetime to region I. Regions IV and III, can be physically interpreted
in terms of the time reversal of I and II. For this reason, the Kruskal solution
is said to describe an eternal black hole. However, this thesis is devoted to the
analysis of those physical black holes which are a result of a complete stellar
collapse. The presence of collapsing matter in the past is associated with a
Kruskal diagram with the III and IV regions covered up [25].

U V

I

II

III

IV

T

R

H+H−

Figure 1.2: Kruskal diagram

1.4 The Raychaudhuri’s equation

The purpose of our entire work is to give a fundamental description of black hole
evaporation. Contrary to the classical case, where all the geodesics inside the event
horizon remains trapped within its surface, the evaporation process is based on the
possibility of a geodesic to actually violate this constraint, crossing the horizon and
producing a flux of outgoing energy.

In this section we would like to develop the mathematical instruments necessary
to understand the relation between the geometry of the background and the shape
of a bunch of geodesics.

Let (M, g) be a spacetime, and O an open region in M. A congruence in O is
a family of curves such that through each point of O there passes one and only one
curves of the family.

Strictly speaking a congruence represents a bundle whose elements never inter-
sect each other within O, hence it is possible to associate a vector field k, tangent
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in every point to the curves of the whole family. For our purposes we restrict our
attention to null geodesics congruence, whose tangent vector field satisfies

gabk
akb = 0 ,

ka∇ak
b = 0 .

(1.19)

The role of general relativity is to link the geometry of a geodesic, i.e the word-
line of a particle, with the notion of curvature of the spacetime. This also holds for a
congruence of geodesics, whose shape can be completely described by the following
tensor field [48, Ch. 9]

Bab
.
= ∇bka . (1.20)

The physical meaning of B comes up when considering an orthogonal infinitesimal
displacement vector, which generates a vector field η such that kaηa = 0 and £kη =
0. Being

kb∇bη
a = Ba

bη
b ,

it follows that Ba
b measure the failure of ηa to be parallel transported along the

congruence, which depends on how the geodesics are locally deformed along the
direction of η.

Spacetime curvature may alter in several ways the shape of a family of geodesics.
In order to extract all the geometrical information stored in B, we need some pre-
liminary consideration. From (1.20) and (1.19) it follows that

kaBab = kaBba = 0 , (1.21)

showing that Bab is completely fixed by the components which are transverse to the
geodesics. Indeed, given a point p in M, it may be natural to define

Bp : V
⊥
p ⊗ V ⊥

p → R , (1.22)

with V ⊥
p the vector space orthogonal to k. However, contrary to the timelike case

[48, Ch. 8], considering a null tangent requires additional mathematical care.
Indeed, if η is a vector of V ⊥

p describing an infinitesimal deviation from the

geodesic, then also η + ck is an element of V ⊥
p , representing the same displace-

ment. This fact brings additional degrees of freedom to B, which are not physically
significant. However, it also provides an equivalence relation such that

ηa2 ∼ ηa1 if ηa2 = ηa1 + cka , (1.23)

with kak
a = 0. Knowing (1.23), we can remove the redundant information from the

definition (1.22), by restricting to the quotient space

Ṽ ⊥
p

.
= V ⊥

p / ∼ ,

whose element are given by the equivalence classes

[η] = {η + ck | kaka = 0, η ∈ V ⊥
p } . (1.24)

This leads to the following “reduced” tensor

B̂p : Ṽ
⊥
p ⊗ Ṽ ⊥

p → R ,
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whose components can be obtained from (1.22), by means of a projector over the
quotient space

h : V ⊥
p → Ṽ ⊥

p , (1.25)

such that
B̂ab = h c

a h
d
b Bcd . (1.26)

We represent the equivalent classes (1.24) and the projector (1.25), by choosing a
suitable auxiliary vector field l [43, Ch. 2], [9, App. F], which satisfies kala = −1,
thus leading to

hab = gab + kalb + lakb , (1.27)

which by definition satisfies

kahab = kahba = 0 , (1.28)

Indeed, by substitution of (1.27) into (1.20), we get

B̂ab = Bab + kal
cBcb + lcBackb + kakbl

cldBcd .

Physically, we should note that, by inverting (1.27) it follows that gab = +hab −
kalb − lakb. Which actually represents the decomposition of the metric g into its
transverse component h and its longitudinal part k⊗l, with respect to the geodesics
flow [43, Ch. 2].

Finally, we use the previous results to classify the geometrical information stored
in B̂, by actually use the transverse metric to get the following decomposition

B̂ab =
1

2
θhab + σ̂ab + ω̂ab , (1.29)

We call congruence parameters the different contributions to this decomposition,
which are given by

θ = habB̂ab ,

ω̂ab = B̂[ab] ,

σ̂ab = B̂(ab) −
1

2
θhab ,

(1.30)

with the symmetrization and anti-symmetrization of B̂ab respectively given by

B̂(ab)
.
= 1

2(B̂ab + B̂ba) ,

B̂[ab]
.
= 1

2(B̂ab − B̂ba) .

The congruence parameters θ, σ̂ab and ω̂ab have different physical interpretations.
Let us consider, for instance, a three-dimensional flat spacetime with Cartesian
coordinates {x, y, z}. Let C be a two-dimensional congruence, made by a single
circumference on the xy plane. The shear tensor σ̂ab describes how C can be de-
formed to an ellipse with arbitrary orientation on xy. On the other hand, the effect
of the torsion tensor ω̂ab is associated to that of a rotation of C with respect to the
z-axis. Finally, the expansion parameter θ encodes the variation of area of the circle
enclosed by C, as a consequence of an expansion or compression of its perimeter.
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This geometrical interpretation can also be extended to Lorentzian manifolds, where
the deformation, rotation and expansion is not constant, being generated by space-
time curvature. In the following section, we will give further details regarding the
physical interpretation of the expansion parameter of a null congruence, in terms of
the rate of variation of the area of a black hole [43, Ch. 2].

The relation between the geodesics parameters (1.30) and the geometrical prop-
erty of the spacetime can be shown as follows. Let us consider a geodesics null
congruence with affine parameter λ. Taking the derivative of B (1.20) along a
geodesic, it follows that [48]

dBab

dλ
= kc∇cBab = −Bc

bBac +Rcbadk
ckd .

By a two-fold multiplication of both members for h, we get the “hatted” equation

kc∇cB̂ab = −B̂c
bB̂ac + ̂Rcbadkckd . (1.31)

By substitution of the decomposition of B̂ (1.29), we get the Raychaudhuri’s equa-
tion for a congruence of null geodesics

dθ

dλ
= −1

2
θ2 − σ̂abσ̂

ab + ω̂abω̂
ab −Rcdk

ckd . (1.32)

Using the alternative form of the Einstein equation (1.5) and recalling that for a
congruence of null geodesics gabk

akb = 0, we can account for the contribution of
matter as

dθ

dλ
= −1

2
θ2 − σ̂abσ̂

ab + ω̂abω̂
ab − 8πTcdk

ckd ,

with G = 1. Taking respectively the symmetric and anti-symmetric part of (1.31),
we get

dσ̂ab
dλ

= −θσ̂ab + ̂Ccbadkckd ,

dω̂ab

dλ
= −θω̂ab ,

(1.33)

with C being the Weyl tensor, which in four-dimensional manifolds takes form [48,
Ch. 8]

Cabcd = Rabcd −
(
ga[cRd]b + gb[cRd]a

)
− 1

3
Rga[cgd]b . (1.34)

1.4.1 The physical meaning of the expansion parameter

In this section we would like to highlight the physical interpretation of the expansion
parameter θ, in the case of a congruence of null geodesics [43, Ch. 2].

Let us consider a congruence of null geodesics, with tangent vector field k and
affine parameter λ. Let γ be a geodesic of the congruence, and p a particular point
of γ at which λ = λp. Moreover, we consider the family of null curves, parametrized
by µ, to which the auxiliary vector field l of (1.27) is tangent. We denote α the
particular auxiliary curve, which passes through p with µ = µp.

The cross section Sp is a neighbourhood of p, i.e a set of points q ∈ M sufficiently
close to p, such that, for any q there passes another geodesic of the congruence γq
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and another auxiliary curve αq which respectively gives λq = λp and µq = µp.
Intuitively, given p ∈ M, Sp is obtained as the collection of those points which
are spanned by the congruence (auxiliary family) with constant value of the affine
parameter λ = λp (µ = µp).

A cross section describes a two-dimensional surface, which depends only upon a
set of two-dimensional coordinates ΩA

p , with A = 2, 3. If the spacetime is spherically
symmetric and if the chosen congruence is made of radial geodesics, the cross section
Sp is naturally labelled by the angular coordinates of (1.10)

Ω2 = θ , Ω3 = φ .

Since for each point of Sp there passes a geodesic of the congruence, we can use ΩA
p

to label the deviation from γ to the other elements of the family, which intersect
Sp at λp. Assuming that the label of each geodesics is preserved when moving away
from Sp, we can get a set of coordinate ΩA for any cross-section S(λ).

This discussion suggests that we can label the four-dimensional coordinates on
the manifold M as xa(λ, µ,Ω2,Ω3)2. Let us consider the following collection of
vectors labelled the two-dimensional index A

eaA
.
=

∂xa

∂ΩA

∣∣∣∣
λ,µ=cost.

,

which are tangent to S(λ). We can define the following two-dimensional matrix

GAB = gabe
a
Ae

b
B , (1.35)

which acts as a (angular) metric on the cross-section. Because γ is orthogonal to its
cross section, we get that

kae
a
A = 0 .

By substitution of (1.27) in (1.35), we immediately get

GAB = habe
a
Ae

b
B .

Hence, by denoting the GAB the inverse of the angular metric (1.35), we get

hab = GABeaAe
b
B ,

with h as in (1.27), it follows that

dGAB

dλ
= 2B(ab)e

a
Ae

b
B . (1.36)

Defining the cross sectional infinitesimal area as dA = det[G ]1/2d2Ω, we multiply
(1.36) by the inverse angular metric GAB. Finally, using definition (1.30), we get

θ =
1

A

dA

dλ
(1.37)

Hence, the expansion parameter measures the rate of change of the congruence’s
cross-sectional area, which in our case will represent the area of the black hole event
horizon.

2Assuming that the auxiliary parameter µ has been chosen to be constant along the geodesics
and such that both γ and α intersect Sp orthogonally.
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1.4.2 Geodesics congruence on Kruskal background

In this section we briefly discuss the properties of a congruence of geodesics restricted
to event horizon of a static spherically-symmetric black hole. Our purpose is to
highlight the usefulness of the Raychaudhuri’s equation, as far as concerning the
analysis of the evaporation of a black hole.

We are going to work with a Kruskal background (1.18), which we recall being

ds2 = −32M3

r
e−r/2MdUdV + r2dθ2 + r2 sin2 θdφ2 , (1.38)

with G = 1 and Rs = 2M . We recall that H+ and H− denote the future and past
horizon, which can be respectively obtained by taking the limit U → 0 and V → 0.

We consider a congruence of radial outgoing null geodesics with tangent vector
field

k = f(U, V )∂V . (1.39)

To compute the Raychaudhuri’s equation, we are interested in determining the

U V

I

II

III

IV

T

R

outgoing

ingoing

Figure 1.3: Ingoing and outgoing radial null geodesics

restriction of B to H+. A priori, for the congruence (1.39), there are only two
non-vanishing component of B|H+

BUV |H+ = −8M2

e
∂V f(0, V ) ,

BUU |H+ = −8M2

e
∂Uf(0, V ) ,

(1.40)

with e the Euler’s number, obtained by the exponential function in (1.38), under
the limit r → 2M .3

The vector field k satisfies the geodesic equation ka∇ak
b = 0, which, on the

future horizon, gives
f(0, V )∂V f(0, V ) = 0 .

3This observation is enough to conclude that the congruence parameters associated to (1.39)
vanish on the event horizon. However, we prefer going a little further, exploiting (1.40) to get an
explicit expression of B|H+ .
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Asking f(0, V ) ̸= 0, we get that

∂V f(0, V ) = 0 , (1.41)

hence BUV |H+ = 0. Now we can proceed with the explicit computation of the
BUU |H+ component.

The geodesic equation requires a proper choice of initial data with respect to the
affine parameter λ, setting up the following initial value problem

dk

dλ
= 0 , (k · ∂U )|H− = α .

Here, we have chosen H− as a surface with constant λ. Exploiting the initial condi-
tion we get that fgUV |H− = α, ensuring

f(U, 0) = − αe

8M2
,

∂Uf(U, 0) = 0 . (1.42)

Evaluating this last result on the bifurcation sphere together with the condition
(1.41), gives

f(0, V ) = − αe

8M2
. (1.43)

On the other hand, we consider explicitly the non-trivial component of the geodesic
equation

f(U, V )

(
∂V f(U, V ) +

(r + 2M)2M

r2
Uf(U, V )e−r/2M

)
= 0 .

We derive both members with respect to U , then taking the limit to H+. Using
(1.41) and being f(0, V ) ̸= 0, we get

2

e
f(0, V ) + ∂V ∂Uf(0, V ) = 0 .

This equation can be integrated along H+. Exploiting (1.42) on the bifurcation
sphere to neglect the constant term, we obtain

∂Uf(0, V ) =
αV

4M2
,

which finally fixes BUU |H+ .
We can resume the results of this section stating that for (1.39)

B|H+ =
−2αV

e
dU ⊗ dV ,

which automatically leads to
B̂|H+ = 0 .

Recalling the definitions of the congruence parameters (1.30), we have finally proven
that for radial outgoing null congruence on a Kruskal background

θ|H+ = 0, σ̂µν |H+ = 0 , ω̂µν |H+ = 0 .

This results, which may appear trivial, confirms the stability of H of a static spher-
ically symmetric black hole, which cannot spontaneously evaporate from a classical
point of view. It is quite natural to ask what happens when we account for the
presence of quantum gravitational radiation.
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1.5 Motivating the perturbative approach

In this section we consider the example of a black hole, subject to a free gravitational
perturbation. We would like to adopt a perturbative point of view, exploiting all
the information that can be studied at linear order.

We denote the complete spacetime, accounting for both the geometry of the
black hole and the contribution of the gravitational wave, as (M, g̃). Hence, we
consider the following linearization of the complete metric

g̃ab = gab + εγab +O(ϵ2) , (1.44)

with g being the Kruskal metric. We consider the effect of the gravitational per-
turbation on the spherically-symmetric background, by using prescription (1.44) to
give the expansion in terms of powers of γ of the congruence parameters, such that

θ =
+∞∑
i=0

θ(i)εi , σ̂ab =
+∞∑
i=0

σ̂
(i)
ab ε

i , ω̂ab =
+∞∑
i=0

ω̂
(i)
ab ε

i .

as well as for the Ricci tensor and for the geodesics tangent vector field

ka =

+∞∑
i=0

ka(i)ε
i , Rab =

+∞∑
i=0

R
(i)
ab ε

i .

We assume that, on the background spacetime, k(0) describes a vector field tangent
to a radial null outgoing geodesics congruence. According to the discussion made in
the previous section, the restriction of such a congruence to the horizon of a Kruskal
background, gives

θ(0)|H+ = 0, σ̂(0)µν |H+ = 0 , ω̂(0)
µν |H+ = 0 , (1.45)

moreover, since we are considering a free gravitational perturbation propagating
along a vacuum spacetime, we get

R(0)
µν |H+ = 0 , R(1)

µν |H+ = 0 .

By substitution into the RHS of the Raychaudhuri’s equation (1.32) and of (1.33),
which are quadratic in the congruence parameters, we get

dθ

dλ

∣∣∣(1)
H+

= 0 ,
dω̂ab

dλ

∣∣∣(1)
H+

= 0 .

Assuming that the horizon is stable in the past, i.e that gravitational perturbations
come from the past-null infinity, we can stress that

θ(1)|H+ = 0 , ω̂
(1)
ab |H+ = 0 .

The previous statements allow us to conclude that

θ|H+ = ε2θ(2) +O(ε3) , (1.46)

ω̂ab|H+ = ε2ω̂
(2)
ab +O(ε3) ,
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which gives
θ2 = O(ε4) , ω̂abω̂

ab = O(ε4) .

Hence, the second order contributions to the Raychaudhuri’s equation (1.32) come
only from the first order correction to the shear tensor and from the second order
correction to the Ricci tensor, thus

dθ

dλ

∣∣∣
H+

= −ε2σ̂(1)ab σ̂
ab
(1) − ε2R

(2)
cd k

ckd +O(ε3) . (1.47)

From (1.47) we observe that linear perturbations of the metric are enough to study
second order effects connected to Hawking radiation on the event horizon. Indeed,
(1.47) shows that γ introduces some potential instability on H, which may lead to
a non-vanishing rate of energy crossing the horizon, being triggered by the emission
of Hawking radiation.

The following chapters will be devoted to the description of gravitational per-
turbation in terms of a quantum field theory of linearized gravity. The algebraic
approach will be developed, providing powerful techniques which will be employed
in the computation of backreaction involved in (1.47).
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Figure 1.4: A Penrose diagram of the Kruskal spacetime
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Chapter 2

Classical theory

2.1 Introduction

In this part of the thesis we shall discuss the quantization of linearized gravity from
the point of view of algebraic quantum field theory on curved spacetimes.

This first chapter will be devoted to the construction of the classical theory,
starting from the expansion of the linear perturbation field with respect to a fixed
background spacetime. Then, the linearization of the Einstein equation will be
reviewed. Moreover, the gauge-invariance carried by linearized diffeomorphisms will
be exploited, thus obtaining a set of normally hyperbolic equations of motion, which
drives the dynamics of the perturbation field on the geometrical background. A
suitable choice of the initial data will guarantee the existence and uniqueness of
solutions to the field equation, and thus of the causal propagator, which will play
a pivotal role in the second chapter, where the quantization of the theory will be
achieved.

2.2 Linearization of the Einstein tensor

Let us consider a one-parameter family of solutions of the Einstein field equations
ε → g̃(ε), such that g̃(0)

.
= g and g̃′(0) .

= γ. To compute the linearized Einstein
equation, we first study the one-parameter family of Einstein tensor ε → G̃(g̃)(ε),
induced by the expansion of the metric, such that G̃(g̃)(0)

.
= G(g) and G̃(g̃)′(0) .=

L(g;γ). Hence, we make the following linearization

g̃ab = gab + εγab +O(ε2) . (2.1)

At this level, we are not considering any particular choice of g, that describes the
classical curved background on which the gravitational radiation γ will propagate.

Under (2.1), two possible choice of spacetimes arise. The background spacetime

(M, g), which at the moment remains fixed, and the complete spacetime (M̃, g̃),
which accounts for both the contributions coming from the background geometry
and the gravitational radiation. From now on, we will denote any object related to
the complete or background spacetime respectively with or without a tilde, referring
to it as a complete or background quantity, e.g G̃ as the complete Einstein tensor.

We adopt the conventions of [48], using the background metric gab to raise and
lower all the indices, without worrying about the presence of hidden γab terms.
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Chapter 2. Classical theory

Hence, the raised complete metric reads

g̃ab = gab − εγab +O(ε2) .

2.2.1 Complete and background covariant derivatives

We follow the idea of [48, Ch. 3], allowing us to compute the complete covariant
derivative ∇̃µ with respect to the background one ∇µ. Indeed, given a vector V ,
the difference between two covariant derivatives defines a tensor of type (1, 2), such
that

∇̃µV
λ = ∇µV

λ + C̃λ
µνV

ν . (2.2)

From now on, we assume that both the spacetime and the background are torsion-
less, which guarantees that C̃λ

µν is symmetric under the exchange of the lower
indices.

The action of the complete covariant derivative on a (k, l) tensor is

∇̃µT
λ1...λk

ν1...νl
=∇µT

λ1...λk
ν1...νl

+
∑
i

C̃λi
µρT

λ1...ρ...λk
ν1...νl

+

−
∑
i

C̃ρ
µνiT

λ1...λk
ν1...ρ...νl

.
(2.3)

We take the case of the metric, where we have that

∇̃µg̃νρ = ∇µg̃νρ − C̃λ
µν g̃λρ − C̃λ

µρ g̃νλ .

Ensuring the validity of the Levi-Civita theorem, we require the metric-compatibility
condition on the complete spacetime, which reads ∇̃µg̃νρ = 0. By index substitution,
we get three independent equations

∇µg̃νρ = C̃λ
µν g̃λρ + C̃λ

µρ g̃νλ (2.4)

∇ρg̃µν = C̃λ
ρµ g̃λν + C̃λ

ρν g̃µλ (2.5)

∇ν g̃ρµ = C̃λ
νρ g̃λµ + C̃λ

νµ g̃ρλ . (2.6)

Adding (2.4) to (2.5), subtracting (2.6) and solving, we get1

C̃λ
µν =

1

2
g̃λα(∇µg̃αν +∇ν g̃µα −∇αg̃µν) .

We substitute (2.1), requiring the background metric-compatibility condition∇µgνρ =

0. Then, we can write C̃λ
µν in terms of the perturbation field

C̃λ
µν =

ε

2
gλα(∇µγαν +∇νγµα −∇αγµν) +O(ε2) . (2.7)

To clarify future dependences from the infinitesimal parameter ε, we give the fol-
lowing definition, by simply removing the tilde prescription and the ε factor from
C̃λ

µν

Cλ
µν

.
=

1

2
gλα(∇µγαν +∇νγµα −∇αγµν) . (2.8)

With a little of effort we have obtained a way to link the complete covariant derivative
to the geometry of the background spacetime which, in some sense, involves just the
Christoffel symbols associated to the perturbation γ.

1Actually there isn’t any preferred choice of which on the three equations need to be subtracted
from the sum of other ones
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Properties We end this section by discussing two properties of the complete co-
variant derivative, which will simplify the computation of the linearized Riemann
tensor.

1. We insert (2.7) in (2.3). Using2 that ε∇̃µg
λρ = O(ε2), we get

∇̃µC̃
λ
νρ = ε∇µC

λ
νρ +O(ε2) . (2.9)

2. From (2.3) the action of the covariant derivative on a one-form ω is given by

∇̃µων = ∇µων − C̃λ
µνωλ,

so it follows that
C̃λ

νρ∇̃µωλ = εCλ
νρ∇µωλ +O(ε2) (2.10)

2.2.2 The linearization of the geometrical quantities

We are now ready to compute the linearization of the complete Riemann tensor.
Starting from its definition

R̃ λ
µνρ ωλ = 2∇̃[µ∇̃ν]ωρ ,

we expand the covariant derivative twice. Having observed that ∇µων is a (0, 2)
tensor and thanks to some simplification connected to property (2.9) and (2.10), we
get that

R̃ λ
µνρ = R λ

µνρ − 2ε∇ Cλ
[µ ν]ρ +O(ε2) ,

where R λ
µνρ := 2∇[µ∇ν]ωρ is the background Riemann tensor.

We recall the definition of the complete Ricci tensor R̃µν := R̃ λ
µλν . By substi-

tution of Cλ
µν

R̃µν = Rµν −
ε

2

(
∇µ∇νγ +□γµν − 2gαβ∇α∇ γ(µ ν)β

)
+O(ε2) ,

where tr(γ)
.
= gµνγµν = γµµ and □ := gαβ∇α∇β. We trace by g̃µν , getting the

complete Ricci scalar

R̃ = R− ε(□γαα −∇α∇βγ
αβ) +O(ε2)

Again, both can be viewed as first order corrections to Rµν := R λ
µλν and R :=

gµνRµν , respectively the background Ricci tensor and curvature.
The complete Einstein tensor is defined as

G̃µν
.
= R̃µν −

1

2
R̃g̃µν .

By substitution of our previous results, we get the expansion G̃µν = Gµν + εLµν +
O(ε2) with

Lµν = ∇α∇ γ α
(µ ν) − 1

2
∇µ∇νγ − 1

2
□γµν +

1

2
gµν□γ − 1

2
gµν∇α∇βγ

αβ . (2.11)

2Again this comes directly from the definition of the covariant derivative and the background
metric-compatibility condition, together with the observation that Cλ

µν is pure first-order term
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We make the following redefinition

γ̄µν
.
= γµν −

1

2
tr(γ)gµν , (2.12)

which put (2.11) in the following form

Lµν = ∇α∇ γ̄ α
(µ ν) − 1

2
□γ̄µν −

1

2
gµν∇α∇β γ̄

αβ . (2.13)

We have completed the linearization of the Einstein tensor. The expression (2.11)
justifies our initial prescription L(g; γ) since (2.13) acts like a tensor partial differen-
tial operator on γ, while carrying a parametric dependence from g, both explicitly
and through the background covariant derivative.

Remark We point out that the expression (2.11), which holds for any choice of
the background g, can be viewed as the curved extension of the Einstein tensor
linearized around the Minkowski background η [48, Ch. 4]. Indeed, G̃µν can be
obtained from the flat case by the formal substitution

∂ → ∇ , η → g .

2.3 Equations of motion

The Einstein tensor has been linearized and split as a sum of two contributions:
the background Einstein tensor G and the linearized tensor L, which drives the
dynamics of γ.

We have all the necessary tools to write down the linearized vacuum Einstein
equation. Starting from the complete vacuum Einstein equation

G(g) + εL(g;γ) = 0 ,

and imposing (1.6) on the background, we can isolate the first order term, which
reads

Lab(g;γ) = 0 . (2.14)

As stressed before, we can interpret the action of L on γ in terms of a tensor differ-
ential operator, which generates the field equations of a gravitational perturbation
on a curved background spacetime. This will be our starting point in the description
of the classical theory of linearized gravity.

As we shall discuss in the following sections, the existence and uniqueness of the
advanced and retarded propagators is ensured if the field equations are normally
hyperbolic [3, 18, 22, 4]. However, this is not the case of L which does not appear
in (2.11) in a normally hyperbolic form. Nevertheless, all is not lost. We exploit the
gauge freedom of our theory to put L in the desired fashion.

2.3.1 Diffeomorphism and gauge invariance

Let us briefly discuss some aspect of gauge freedom for linearized gravity. Equation
(2.14) has been obtained following a geometrical approach. However, it can be also
derived by means of the action principle.
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Let us consider the Einstein-Hilbert action [48, 9], by neglecting the cosmological
constant Λ and any boundary term [48, App. E]

SEH =
1

32πG

∫
R
√−gd4x . (2.15)

Expanding to second order, we get the action for linearized gravity on a curved
background

Slg =
1

32πG

∫
[12γ

ab□γab − 1
4γ

a
a□γ

b
b + (∇aγab − 1

2∇bγ
a
a)

2 + γabRacbdγ
cd+

+ γabR
bcγac − γccγ

abRab − 1
2Rγabγ

ab + 1
4R(γ

a
a)

2]
√−gd4x .

(2.16)

which reproduces the free field equations given by (2.11) [1, 18].
Let us briefly review the idea behind the covariance of general relativity and its

consequences for gravitational perturbations. We consider a diffeomorphism

ϕ : M̃ → Ñ ,

namely an invertible map such that both the map and its inverse are smooth. Alge-
braically, covariance requires ϕ to be an automorphisms of the space of solution of
the Einstein equation. Namely, if (M̃, g̃) is a solution of (1.4), then also (Ñ , ϕ∗g̃)
solves (1.4), with ϕ∗ being the pullback generated by ϕ [48, App. C].

The request for covariance has a straight physical consequence: if two spacetimes
are related by a diffeomorphism, then they are physically indistinguishable. Thus,
the mathematical idea behind ϕ founds an interpretation in terms on the equivalence
of the classical measures obtained by different observers of the same spacetime.

From an infinitesimal point of view, the action of a diffeomorphism ϕ can be
studied in terms of a vector field w, which generates the transformation [48, Ch. 2].
Let us consider a one-parameter group of diffeomorphisms

ϕt : R× M̃ → Ñ ,

such that ϕt ◦ ϕs = ϕt+s. Indeed, fixed t ∈ R, ϕt : M̃ → Ñ is a diffeomorphism, in
the sense discussed above. Conversely, for a fixed point p ∈ M̃, we get a curve

ϕt|p : R → M̃ ,

parametrized by t, which is called an orbit of ϕt and which passes through p at t = 0.
Hence, to each orbit of ϕt in p we can associate a vector w|p, tangent to ϕt|p at t = 0.
Moving from p, we can describe the whole family ϕt with a vector field w, which is
called the generator of the transformation associated with the diffeomorphism.

Let us consider now the one-parameter family of pullbacks ϕ∗t associated with
ϕt. Infinitesimally, the action of ϕ∗t on the metric tensor can be formalized through
the notion of Lie derivative, which is defined as

£wg̃ab
.
= lim

t→0

1

t

(
ϕ∗−tg̃ab − g̃ab

)
,

thus giving [48, App. C]
£wg̃ab = ∇̃awb + ∇̃bwa , (2.17)
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with w the vector field that generates the transformation.
From a field theoretical point of view, the freedom brought by ϕ is encoded as

a gauge symmetry of (2.15). The linearization procedure preserves this invariance,
which is inherited by (2.16) as the gauge freedom carried by linearized diffeomor-
phisms. Indeed, given a vector field w, the action (2.16) is invariant under the
following gauge transformation, defined with respect to the background metric

δwγab = −£wgab . (2.18)

By substitution of (2.17), linearized with respect to the background metric g, we
can explicitly write (2.18) in terms of the generator of the transformation

γab 7→ γ′ab = γab − 2∇ w(a b) . (2.19)

To put L in a more useful form, we shall exploit the freedom carried by (2.18), by
imposing some suitable gauge condition. Since the theory we are studying is linear
in the equations of motion, we do not have to deal with the typical problem involved
with the introduction of gauge-breaking terms. Instead we gauge-fix the equation
of motions, discussing the other possibility during the quantization procedure, by
means of the BRST procedure.

Employing the redefinition of the perturbation field given by (2.12), we impose
the de Donder gauge condition [18], which in some sense is related to the Lorentz
gauge of the Maxwell theory [42]

∇aγab − 1
2∇bγ

a
a = 0 . (2.20)

Under the field redefinition (2.12) the de Donder prescription reads

∇aγ̄ab = 0 . (2.21)

Before continuing our discussion we notice that, given a (k, l) tensor

(∇µ∇ν −∇ν∇µ)T
λ1...λk

σ1...σl
=−

∑
i

R λi
µνρ T λ1...ρ...λk

σ1...σl

+
∑
i

R ρ
µνσi

T λ1...λk
σ1...ρ...σl

.
(2.22)

We simplify the equation of motion specializing (2.22) to (1, 1) tensors, thus leading
to

2∇ ∇[α µ]γ̄
α

ν = −R α
αµβ γ̄ β

ν +R β
αµν γ̄ α

β = R β
αµν γ̄ α

β , (2.23)

for a vacuum spacetime background. In addition to the gauge condition (2.21),
(2.23) gives that

∇α∇ γ̄ α
(µ ν) = 1

2(R
β

αµν γ̄ α
β +R β

ανµ γ̄ α
β ) = Rαµνβ γ̄

βα . (2.24)

We substitute (2.24) in (2.13). Thus, the equations of motion (2.14) for the redefined
perturbation (2.12) becomes

□γ̄µν − 2Rαµνβ γ̄
αβ = 0 , (2.25)

where we have defined the curved wave operator as □ = gab∇a∇b. Equation (2.25)
is often called the Lichnerowicz tensor equation for linearized gravity [30].
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The flat limit It should be noticed that when we consider a Minkowski back-
ground, where Rαµνβ = 0, the de Donder gauge condition reduces to the Lorentz
one

∂µγ̄µν = 0 , (2.26)

while (2.25) reads
□γ̄µν = 0 ,

which is the flat waves equation as reported in [48, Ch. 4], describing the dynamics
of a free perturbation on a flat spacetime, namely the propagation of a gravitational
wave.

Again, the equation of motion (2.25) can be linked to the action of a tensor differ-
ential operator on γ, whose components are given by

P αβ
µν

.
= δαµδ

β
ν□− 2Rα β

µν , P αβ
µν γ̄αβ = 0 . (2.27)

Through some work we have shown that it is possible to put the equation of motion
(2.25) in a normally hyperbolic form. In the following section, we will discuss the
Cauchy problem related (2.25), from the existence and uniqueness of the solutions
to the difficulties in the construction of the advanced and retarded propagators of
(2.27).

Generalized de Donder condition Before ending this section, we consider a
generalization of the de Donder condition (2.20), which will be useful during the
discussion of BRST quantization [17, 16]. We start again from the equation of
motion of a free gravitational perturbation on a curved spacetime background

∇α∇ γ α
(µ ν) − 1

2
∇µ∇νγ − 1

2
□γµν +

1

2
gµν□γ − 1

2
gµν∇α∇βγ

αβ = 0 . (2.28)

Let us consider the following gauge condition

∇aγab − k∇bγ
a
a = 0 , (2.29)

which will be called generalized de Donder gauge condition. By following the same
argument already used in (2.24), we substitute (2.29), thus getting

∇α∇ γ α
(µ ν) = k∇µ∇νγ +Rαµνβγ

βα .

By substitution in (2.28), we get

(2k − 1)∇µ∇νγ + 2Rαµνβγ
βα −□γµν − (k − 1)gµν□γ = 0 . (2.30)

We trace this equation, by multiplication of the inverse background metric, thus
obtaining, for a vacuum spacetime background

(k − 1)□γ = 0 .

Finally, by further substitution in (2.30), we obtain

(2k − 1)∇µ∇νγ + 2Rαµνβγ
βα −□γµν = 0 .

From this last result it becomes clear that, for the linearized theory, the case provided
by k = 1

2 is the only one which allows a normally hyperbolic set of equations of
motion. Since this requirement is pivotal to the existence and uniqueness of the
advanced and retarded propagator, we will always assume this condition for our
further discussions.
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2.3.2 Existence and uniqueness of solutions

In this section we discuss whether the Cauchy problem of linearized gravity on curved
spacetimes is well-posed, or not. In the algebraic formulation of quantum field theory
this is a main topic, which has been treated several times in the literature, both for
the gravitational case [18, 24] and for other field theories [4, 3, 45].

A well-behavioured Cauchy problem is a must-have for any field theory, since
it is the first step in the construction of different fundamental objects: from the
classical description given by propagators to the algebraic structure of the quantum
theory. Contrary to the Klein-Gordon theory, the case of a gravitational perturba-
tion requires more work on a mathematical ground.

We start our discussion by recalling some definition, allowing for the description
of a classical field ψ without any particular requirement on its geometrical properties.
Let us consider a vector bundle F (M, π, V ), i.e a fiber bundle with a vector space
structure [4, Def. 2.1], [37, Ch. 9]. Here M denotes the base space, V the typical
fiber and π : F → M the projection function, such that each fiber Fp

.
= π−1(p) is

isomorphic to the vector space V .

1. We call section any smooth inverse ψ of the projection map π. We denote
Γ(F ) the space of smooth sections of F .

2. Let us consider F1(M, π1, V1), F2(M, π2, V2) two vector bundles with same
base space M. The tensor product bundle can be obtained by assigning a
tensor product of fibers V1 ⊗ V2 to any point p ∈ M.

From a physical point of view, Γ(F ) can be interpreted as the space of configuration
field, whose element ψ are classical fields. Moreover, different choices of the vector
space V lead to different kind of field theories. For instance, V = R reduces to the
case of a Klein-Gordon field, while V = R4 describes the structure of a spin-1 field.

We end this preamble by recalling that, given ψ a smooth section of F , a linear
partial differential operator L : Γ(F ) → Γ(F ) on a globally hyperbolic spacetime
(M, g), is called normally hyperbolic if it can be expressed as [4]

Lψ = −gµνIV ∂µ∂νψ +Aµ∂µψ +Bψ ,

for every coordinate frame on M, with Aµ and B smooth and IV the identity on V .
Let us specialize this discussion to the case of a metric perturbation of the

background spacetime (M, g). From the beginning of this chapter, γ̄ has been built
through (2.1) as a smooth symmetric (0, 2) tensor field on M, which acts on

TM⊗ TM .

Let us denote V .
= Sym(TM∗⊗TM∗) the symmetric tensor bundle, with base space

M and Sym(TpM∗ ⊗ TpM∗) the typical fiber on p ∈ M. Hence, the configuration
space of gravitational perturbation is given by Γ(V), with γ̄(x) being any smooth
section of V.

We set up the necessary formalism of algebraic quantum field theory by smearing
the linearized perturbation field γ with a test tensor f , thus defining the notion of
a classical smeared field

Ff (γ)
.
=

∫
γ̄ab(x)f

ab(x)
√−gd4x . (2.31)
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From now on, we shall commit a slight abuse of notation by adopting the prescription
Ff (γ)

.
= γ(f). Moreover, the following discussion does not depend from the trace

subtraction (2.12), which can be always inverted [24], giving

γ̄(f) = γ(f)− 1

2

∫
γaaf

b
b

√−gd4x .

From a physical point of view this definition is actually justified from the following
observation. Usually a (configuration) field permeates the spacetime by carrying the
physical property of a particularly model. However, any experimental setup, namely
a detector, is of finite spatial extent on M, providing also a measure which belongs
to a limited time interval. Prescription (2.31) reproduces this situation, making
use of the test function to model the physical response of the detector (localized in
supp f), which gives a measure by actually smearing the configuration field γ̄ab(x).

The test tensor f , which lives in the space of compactly supported sections Γ0(V),
will play an important role in the discussion of gauge-invariant quantization, whose
treatment is delayed to the algebraic quantization chapter. Moreover, we would
like to restrict our attention to those γ̄(f) which are formed by actually smearing
solutions of the field equation (2.25). Indeed, we call space of on-shell configurations,
the subspace of smooth sections Γ(V) that contains the solutions to the field equation
(2.25)

Sol(V) .= {γ ∈ Γ(V) | P cd
ab γ̄cd = 0} = Ker(P ) .

Now we have all the necessary instruments to solve the initial value problem
associated with the equation of motion (2.25). As stressed before, several statement
of this theorem can be found on [4, 3, 18, 24].

Theorem 1. Let (M, g) a globally hyperbolic spacetime, with Σ a spacelike Cauchy
surface and n its future-pointing unit normal vector field. Let P : Γ(V) → Γ(V)
a normally hyperbolic tensor operator, whose components are given by (2.27). Let
(u,v) a suitable choice of the initial data on Σ. The Cauchy problem given by

P cd
ab γ̄cd = 0 ,

γ̄ab|Σ = uab ,

(∇nγ̄)ab|Σ = vab ,

admits a unique solution γ̄ ∈ Sol(V).

Once that the existence and uniqueness of the solutions of P is established, we
can invert redefinition (2.12) to extend theorem 1 to the L operator [24].

2.3.3 The causal propagator

In the previous section we have showed that the dynamics of a gravitational per-
turbation can be uniquely solved by means of an initial value problem on a curved
spacetime. In this section we discuss the role of propagators, and their multi-purpose
importance: from the construction of the solutions to the quantization process.

As stressed before, the existence and uniqueness of solutions of L comes from
the fact that the differential operator P is normally hyperbolic. Such a differential
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suppf suppf

supp(G+f)

supp(G−f)

G+

G−

Figure 2.1: Advanced and retarded propagators and supp f

operator also admits a unique set of advanced (+) and retarded propagators (−)
[18, 24], [3, Ch. 3], i.e the fundamental solutions of the equation of motion (2.25)

G± : Γ0(V) −→ Γ(V), G±L = LG± = I , (2.32)

which satisfies
supp(G±f) ⊂ J±

M(supp(f)) , (2.33)

with supp(f) the compact support of a test tensor f ∈ Γ0(V). Hence, from (2.32)
it follows that L(G±f) = f .

As showed by (2.33), by applying G± to a test tensor we generate a configuration
field, i.e an element of Γ(V), whose support is actually extended in the past or future
light cone of supp(f). We sketch this situation in figure 2.1.

Explicitly, the action of the advanced and retarded propagators on Γ0(V) can be
written in components by means of their distributional kernel

(G±ab
c′d′f

c′d′)(x) =

∫
G±ab

c′d′(x, x
′)f c

′d′(x′)
√−gd4x′

with x, x′ labelling two points of the spacetime. Here, we are actually using the
primed prescription to denote those indices which referred do primed coordinates on
the spacetime.

The invertibility condition of L (2.32) actually reads on vacuum spacetimes [34]

(□gacgbd − 2Rcabd)G
±ab

c′d′(x, x
′) = gc′(cgd)d′δ

4(x− x′) .

From this last condition we should note that the expression of the propagators,
strongly depends on the choice of the background spacetime, as well for everything
that concern the dynamical evolution of the theory.

Once that the advanced and retarded solutions G± are known, we can define
the causal propagator as

Gabc′d′
.
= G−

abc′d′ −G+
abc′d′ .
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From (2.32) and (2.33), it follows that

L(Gf) = 0 , supp(Gf) ⊂ JM(supp(f)) .

This last prescription suggests that: to any test tensor f we can associate a pertur-
bation field γ(x) = (Gf)(x), which is a solution to (2.25). To give a complete char-
acterization of Sol(M), we observe that, however, on-shell fields are not faithfully
labelled by the test tensor. To show this, let us consider a test tensor hab = Lab

cdf
cd,

then the smeared field reads

γ(h) =

∫
γab(x)(Lf)

ab(x)
√−gd4x =

∫
(Lγ)ab(x)f

ab(x)
√−gd4x = 0 ,

which vanish for γ ∈ Sol(M). Hence, any on-shell field vanishes when smeared on
the image of L, then γ(f + Lg) = γ(f). To reduce this ambiguity, we can modify
our initial prescription (2.31) by smearing against an equivalence class of test tensor

[f ]
.
= {f +Lg | f , g ∈ Γ0(M)} .

This discussion makes clear that the causal propagator G provides an isomorphism
which characterizes the space of on-sheel configuration

Sol(M) ≃ Γ0(M)/L(Γ0(M)) ,

with L(Γ0(M)) the image of L on the space of test tensors.

2.3.4 Degrees of freedom for curved gravitational waves

In the last section we impose the de Donder gauge condition (2.21), allowing the
simplification of the equations of motion, which read (2.25). Nevertheless, as we are
going to discuss, our choice did not completely fix the invariance carried by (2.19),
which actually shows a residual freedom.

First, we consider the prescription of linearized diffeomorphisms (2.19) applied
to the redefined perturbation field γ̄. Combining the trace subtraction (2.12) with
(2.19), we compute the gauge transformation with respect to γ̄, getting

γ̄ab 7→ γ̄′ab = γ̄ab − 2∇ w(a b) + gab∇cw
c .

Lowering the indices and taking the divergence of both members, we obtain that

∇aγ̄′ab = ∇aγ̄ab −□wb − 2∇ ∇[a b]w
a . (2.34)

Moreover, we use property (2.22) of the Riemann tensor together with the back-
ground vacuum Einstein equation (1.6)

2∇ ∇[a b]w
a = −R b

abλ w
λ = −Raλw

λ = 0 . (2.35)

Putting the last equation into (2.34) and imposing the de Donder gauge (2.21), we
have that ∇aγ̄′ab = 0 if and only if

□wa = 0 . (2.36)
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Hence, even working with fields that satisfy the de Donder condition, there exists
a residual freedom, which is preserved by restricting the set of all gauge transfor-
mations δwγ̄ to those satisfying (2.36). In other words, the choice (2.21) does not
fix all the degrees of freedom carried by linearized diffeomorphisms. The residual
gauge comes from the fact that (2.36) has an infinite number of solutions. However,
equation (2.36) is normally hyperbolic, ensuring the existence of a unique solution
w, upon a suitable choice of the initial data (in the sense discussed by section 2.3.2)
[42, 4] 

□wa = 0 ,

wa|Σ = ua ,

(∇nw)
a|Σ = va ,

(2.37)

with Σ a spacelike Cauchy surface.
We can summarize the previous discussion by stating that this residual gauge

can be fixed by taking additional conditions on the restriction of the gauge generator
w to Σ. However, there is no guarantee that the desired condition can propagate at
any time on M. Precisely, this is the case of the TT gauge (transverse-traceless),
which is given by

gabγab|Σ = 0 , (2.38)

set up by requiring ∇aw
a|Σ = −1

2γab. On Schwarzschild spacetime for instance, the
propagation of (2.38) is known to be afflicted by some topological obstruction, which
can be avoided by requiring additional condition on γ(f) [5, 18].

The knowledge of the de Donder condition (2.21), together with the residual one
(2.37), allow us to perform a simple count of the degrees of freedom of a gravitational
wave, propagating on curved spacetime background. Indeed

#dof of γab : 16︸︷︷︸
(0,2) tensor

− 6︸︷︷︸
index symmetry

− 4︸︷︷︸
de Donder gauge

− 4︸︷︷︸
residual gauge

= 2

This simple calculation highlights what we expect from a physical point of view.
Even on backgrounds described by a curved spacetime, gravitational waves propa-
gates with two independent normal modes.

We complete this chapter by outlining that the explicit computation of the prop-
agators (2.32) is not easy to achieve on a curved background. Indeed the calculation
of G± is related to the inversion of L, which comes by studying the equation of mo-
tion (2.25). However, the Christoffel symbols both contained in □γ̄ab and Racdbγ̄

cd

couples together the degrees of freedom carried by γ, leading to a system of coupled
second order partial differential equations. Nevertheless, a recent result have shown
that on Schwarzschild, the Lichnerowicz equation (2.25) can be partially decoupled
in two systems in upper triangular form, actually simplifying the computation of
G± [30].

52



Chapter 3

Quantum theory

3.1 Introduction

In the previous chapter we have developed all the instruments necessary to for-
mulate the classical theory of linearized gravity. Here we are going to discuss the
quantization of the theory, following the algebraic approach. Contrary to the scalar
field theory, discussed in appendix A, the quantization of linearized gravity requires
additional care due to the presence of gauge invariance. We will treat this problem
by discussing two different point of view. On one hand, linearity of the equations
of motion (2.25) allows one to give a quantization scheme without introducing any
gauge-breaking term, recovering the freedom by the suitable choice of an equivalence
class of configurational field [18, 4]. On the other hand, we will argue that the devel-
opment of objects at least quadratic in γ, such as the stress-energy tensor, requires
the addition of ghost fields, thus leading to the quantization via BRS approach.

Once that the algebraic structure of the space of observables is known, we will
deal with the problem of the computation of quantum expectation values, which will
require the construction of a quantum state ω. In particular, we will focus on the
choice of physically admissible states, i.e those that satisfies the Hadamard property.

3.2 Quantization and vacuum states, from flat to curved
spacetimes. A motivation to the algebraic approach

In this section we briefly summarize the standard approach to quantization of a
spin-2 fields on a flat spacetime [32, 50], highlighting the critical issues that comes
up when aiming for a generalization to curved backgrounds.

Let us consider the Minkowski spacetime (R4,η) on which we consider a spin-2
real free field to describe the gravitational perturbation h1. Under the harmonic
gauge (2.26), the action of linearized gravity (2.16) reduces to

Sflat =
1

32πG

∫
[12h

ab□hab − 1
4h□h]d

4x . (3.1)

In this brief introduction we do not discuss the presence of gauge breaking terms

1For this particular section, we have slightly changed notation from γ to h to simply distinguish
the flat theory from the curved one.
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within Sflat. Indeed, we postpone the treatment of gauge symmetry for quantum
theories to the following sections, by adopting the algebraic framework.

The field equations can be obtained by computing the variational derivative of
(3.1), which gives

□hab = 0 , (3.2)

with the flat wave operator given by □ = ηab∂a∂b. Since Minkowski spacetime is
symmetric with respect to spacetime translations, the solutions of the equations of
motion (3.2) are usually studied in terms of their Fourier transform h̃ab(p), which
gives

p2h̃ab(p) = 0 , (3.3)

with p2 = −ω2
p + |p⃗|2. The solutions of (3.3) are given as distributions of the form

h̃ab(p) =
+2∑

σ=−2

f(p, σ)uab(p, σ)δ(p
2) , (3.4)

with uab(p, σ) called polarization tensor and σ ∈ Z the spin index. Indeed, hab(p) has
support in the light-cone, whose structure is described by the relativistic dispersion
relation

−ω2
p + |p⃗|2 = 0 . (3.5)

Due to the present of the delta distribution, the double-cone given by (3.5) can be
separated in an upper and lower branches, which are respectively given by ωp ≥ 0
and ωp < 0. Following this observation, we can consider the decomposition of the
field hab in two modes, of positive and negative frequencies [50]

hab(x) = h+ab(x) + h−ab(x) .

By inverting the Fourier transform (3.4), we get

h+ab(x) =

∫
1

(2π)3
1

2ωp

+2∑
σ=−2

a(p, σ)(p, σ)eip·xd3p ,

h−ab(x) =
∫

1

(2π)3
1

2ωp

+2∑
σ=−2

a+(p, σ)uab(p, σ)e
−ip·xd3p ,

(3.6)

with a(p, σ) and a+(p, σ) the Fourier coefficients associated with the positive and
negative frequencies decomposition of f(p, σ).

The quantization of the theory is usually achieved by promoting h+ab and h−ab to
operators on the Fock space

ĥ+ab, ĥ
−
ab : F → F , F = ⊕n(⊗n

j=1H) ,

with H the Hilbert space of single particle. Actually, the operatorial character of
both ĥ+ab and ĥ−ab requires the interpretation of the Fourier coefficients of (3.6) in
terms of the so-called creation and annihilation operators, which satisfy the canonical
commutation relations

[â(p, σ), â+(q, λ)] = iδσλδ
3(p− q) ,

[â(p, σ), â(q, λ)] = 0 ,

[â+(p, σ), â+(q, λ)] = 0 ,

(3.7)
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with ℏ = 1. This formalism allows the definition of the vacuum state in terms of a
vector |0⟩ ∈ F , such that a(p)|0⟩ = 0.

The previous description can also be extended to the case of a curved spacetime
background (M, g), by means of the following procedure.

1. Choice of a local coordinate frame {xa} on (M, g).

2. Identification of a local time function t(x), by selection of a suitable time-like
Killing vector field k, if that even exists.

3. Definition of the Fourier transform with respect to t(x).

4. Computation of the positive and negative frequencies coefficients.

5. Choice of a suitable Hilbert space to H describe the one-particle structure of
the theory, in term of the positive frequency solution.

6. Construction of the Fock space F from H , by promoting the positive and
negative frequencies coefficients to creation and annihilation operators.

7. Identification of the vacuum state by means of a vector of F , annihilated by
the annihilation operator.

However, this scheme leads to several critical issues. Above all, on curved back-
grounds, the choice of the time function t(x) is highly non-unique2, leading to mul-
tiple definitions of the Fourier transform, and thus of the creation and annihilation
operators. Moreover, the canonical commutation relations (3.7) appears in a non-
covariant fashion. Finally, the entire construction from the initial choice of the local
coordinate frame leads to a definition of the vacuum state which is not diffeomor-
phism invariant. This has a significant physical consequence: different observers
may experience non-equivalent choices of the vacuum state or different results of a
measure of the same observable, as pictured by figure 3.1.

We can bring back the problem of applying the standard formalism to curved
spacetime to one critical issue: from the beginning of the previous discussion, we
have simultaneously chosen the quantization rule of fields together with their repre-
sentation on a Hilbert space. In this way, we have obtained a description which is
not well-behaved on curved spacetimes, for which the former scheme is not universal
at all.

In this chapter we will adopt the algebraic approach to quantum fields on curved
spacetimes. Indeed, we shall discuss a framework where the quantization of the
fields is split from the choice of their representation on Hilbert spaces. On one hand,
we shall investigate the algebraic structure behind quantum fields from an abstract
point of view, thus ensuring a covariant description which holds for any choice of the
spacetime background. On the other hand, we will show that, on curved spacetimes,
the representation of fields highly depends on the choice of the quantum state, whose
construction will be discussed in details. Indeed, we will end this chapter recovering
the standard formalism, by means of the so-called Gelfand–Naimark–Segal (GNS)
construction.

Before ending this section we review the highlights of the algebraic framework.

2A non-trivial exception to this is represented by those spacetime which admits a global time-like
vector field.
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• Covariance.

• Quantization procedure in a background-independent fashion.

• Characterization of the freedom in the choice of the quantum (vacuum) state.

• Independence from the representation on Hilbert spaces.

• Recovery of the standard formalism by the GNS construction.

3.3 Algebraic quantization

In this section we review the algebraic quantization of the perturbation field γ. This
discussion will be devoted to the construction of linear observables, which do not
require the addition of any gauge-breaking terms in the action (2.16) [18, 24, 7].

Before discussing covariant canonical quantization, we review the problem of
gauge invariance, described in the previous chapter, translating it in a more powerful
mathematical description. We recall the definition of a linear classical or quantum
observable, as a configuration field, i.e a smooth section of Γ(V), smeared with an
equivalence class of compactly supported test tensors [f ] (2.31). In order to put
the equation of motion in a normally hyperbolic form (2.25), we have exploited
the de Donder gauge condition, by requiring ∇aγab = 0, and actually reducing the
configuration space, which splits as [18]

Γ(V) = ΓdD(V) + G(V) , (3.8)

with ΓdD(V) the space of those configurations that satisfy the gauge-fixing condition,
and

G(V) = {£wg ∈ Γ(V)} , (3.9)

the space of pure gauge fields. Indeed, prescription (3.8) states that any perturbation
field which do not satisfy the condition (2.21) is indeed made of a pure gauge term. A
proof of this decoupling has been actually sketched in section 2.3.4, while discussing
the existence of the residual gauge [18].

The first step towards the quantization of linearized gravity requires the con-
struction of a phase space, on which observables takes value, together with the
definition of a suitable symplectic structure σ. Then, it will be possible to define
the action of Poisson bracket on γ, which allows the quantization through covariant
canonical prescription.

However, the gauge freedom carried by linearized diffeomorphisms and encoded
by (3.8) introduce a degeneracy on σ, which requires additional care. Let us consider
the action of a pre-symplectic, i.e degenerate symplectic form, which acts on two
on-shell smeared fields γ1,γ2 [18]

σ(γ1,γ2)
.
=

∫
Σ
(γ1abπ

ab
2 − γ2abπ

ab
1 )dΣ ,

with Σ a spacelike Cauchy surface and π the conjugate momentum, which can be
defined from the action (2.16) as

πab = − nc√−g
δSlg
δ∇aγbc

.
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The degeneracy arises when considering a pure gauge configuration. Indeed, it can
be shown that σ(γ1,£wg) = 0 [18], actually giving

σ(γ1,γ2 +£wg) = σ(γ1,γ2) ,

for any choice of the gauge transformation generator w. As for section 2.3.2, we can
remove this degeneracy by considering an equivalence class of on-shell perturbation

[γ]
.
= {γ +£wg | γ ∈ Sol(M)} .

Thus a non degenerate symplectic form is given by

σ([γ1], [γ2])
.
=

∫
Σ
(γ1abπ

ab
2 − γ2abπ

ab
1 )dΣ , (3.10)

with γ1 and γ2, two choices of suitable representatives. These considerations can
also be extended to linear observables (2.31). Indeed the contribution of pure gauge
smeared fields reads

£wg([f ]) =

∫
(∇(awb))f

ab√−gd4x = −
∫
wb(∇af(ab))

√−gd4x .

Being w an arbitrary vector field, we can argue that the contribution of pure gauge
fields vanishes if and only f satisfies ∇af(ab) = 0. Hence, adopting the functional
notation of γ(f), to clarity extent, we get

F[f ](γ +£wg) = F[f ](γ) ,

which allows us to restrict the smearing operation to the equivalence class [γ]. From
(3.9), we can build the gauge-invariant phase space as

P(V) = Sol(V)/G(V) .

Finally we can define gauge-invariant linear smeared fields, as functionals on the
phase space

F[f ] : P(V) → C , F[f ]([γ]) =

∫
γab(x)f

ab(x)
√−gd4x ,

with ∇af(ab) = 0 and γ any on-shell representative of the equivalence class. Despite
γ being real, F takes value on complex numbers, admitting the possibility to deal
with complex test tensors. From now on, we simplify this prescription by actually
denoting F[f ]([γ])

.
= γ(f), actually omitting the equivalence notation.

Once that the symplectic structure is formed, it can be related to the action
of the causal propagator G [18]. Indeed, given two test tensors f ,h ∈ Γ0(V), we
denote

G(f ,h)
.
= −2

∫
f (ab)G cd

ab (h̄s)cd
√−gd4x , (3.11)

with (h̄s)ab
.
= h(ab) − 1

2gab trh. Given γ(f), γ(f ′) two smeared fields of the same
configuration γ, definition (3.11) is related to the expression of the symplectic form
(3.10) by [18]

G(f ,f ′) = 4σ(Gf̄s,Gf̄ ′
s) . (3.12)
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Hence, using (3.11) we can actually fix the symplectic structure of Poisson brackets
[18, Th. 4.10], by means of the following prescription

{γ(f), γ(f ′)}P = G(f ,f ′) . (3.13)

Once that the classical theory is known, the quantization can be performed, pro-
moting the smeared fields to elements of an algebra, whose structure is described by
the canonical commutation relation

[γ̂(f), γ̂(f ′)] = i{γ(f), γ(f ′)}P Î , (3.14)

with ℏ = 1. This prescription together with (3.13) give the canonical commutation
rule in a covariant fashion, by means of the causal propagator, which gives

[γ̂(f), γ̂(f ′)] = iG(f ,f ′) . (3.15)

In order to relate (3.15) with the algebraic structure generated by the observables,
we give the following definition [31, 22].

We call unital ∗-algebra, any algebra A with unit Î, which is endowed of an
operation ∗, called involution, such that for any A,B ∈ A

(A∗)∗ = A ,

(AB)∗ = B∗A∗ .

The involution ∗ plays a pivotal role in both the introduction of the notion of observ-
able, as a self-adjoint element of A, and in the positivity requirement of quantum
states, as we shall discuss in the following section. On the other hand, we will show
that the standard language of QFT can be recovered when considering the repre-
sentation of the elements of A as operators on a Hilbert space H, for which the ∗
operation is mapped into the Hermitian adjoint one †.

We can resume the results of this section by means of the following statement.
The Dirac prescription imposed by (3.14) gives rise to the CCR algebra A(M),
a unital ∗-algebra generated by γ̂(f) and the unity Î. Indeed any quantum field
γ̂(f) ∈ A(M) satisfies the following property [31, 18, 22].

1. Linearity: γ̂(c1f1 + c2f2) = c1γ̂(f1) + c2γ̂(f2), with c1, c2 ∈ C .

2. Hermiticity: γ̂(f)∗ = γ̂(f∗) .

3. Symmetry: γ̂(f) = 0, for any anti-symmetric f ∈ Γ0(V) .

4. Field equations: γ̂(Lf) = 0 .

5. Commutation relation: [γ̂(f), γ̂(f ′)] = iG(f ,f ′)Î .

With the test tensors of Γ0(V) that satisfies ∇af
(ab) = 0.

We call (gauge-invariant) observable, generated by linear fields, any element O ∈
A(M), written as a polynomials of the generators of the algebra [31]

Ô = c(0)Î+
∑
i1

ci1(1)γ̂(f
(1)
i1

) + ...+
∑

i1,...,in

ci1...in(n) γ̂(f
(n)
i1

) · · · γ̂(f (n)
in

) ,
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with ci1...in(k) ∈ C, which satisfies

Ô∗ = Ô .

During this section we have discussed the quantization of linearized gravity. The de-
velopment of the algebraic approach have provided a way to implement the canonical
commutation relations in a covariant fashion. Moreover, gauge-invariance has been
implemented a posteriori, by actually restricting to a specific class of test tensors.
The construction of A(M) set up the necessary formalism apt to understand the
algebraic structure generated by γ̂(f), without referring to any particular represen-
tation on any Hilbert space and providing a description which holds for any choice
of the spacetime background. Nevertheless, the standard language of configuration
fields can always be recovered. Indeed, given γ a perturbation field, the canonical
quantization rule reads

[γ̂ab(x), γ̂cd(x
′)] = iGabcd(x, x

′)Î , (3.16)

with Gabcd the distributional kernel of (3.12). From (3.16) we may note that the
structure of the algebra A(M) is deeply influenced by the choice of the background
spacetime (M, g). As we have already stressed in the previous section, this depen-
dence is carried and encoded by the causal propagator G, which is generated by the
equations of motion (2.25).

3.3.1 Beyond gauge-invariant observables. A call for ghosts

In this section we consider an extension of the previously discussed approach, going
beyond the notion of gauge-invariant observables, generated by linear fields. These
objects will play a pivotal role in understanding the evaporation of a black hole,
since it will be involved in the computation of the stress-energy tensor Tab, which is
quadratic in γ and its covariant derivatives.

From a geometrical point of view, there exists different ways to contract all the
indices to square a symmetric tensor γab, e.g γ

b
a γbc or γ

a
aγ

b
b .

As a first example we consider the configuration field given by γ̂ b
a (x)γ̂bc(x

′).
Indeed, we are interested to the case of its coinciding point limit

lim
x′→x

γ̂ b
a (x)γ̂bc(x

′) ,

that once smeared, as for the Klein-Gordon theory [31], gives rise to the following
observable

Ô2(γ̂;f) =

∫
γ̂ b
a (x)γ̂bc(x

′)f (ac)(x)δ4(x− x′)
√−g

√
−g′d4xd4x′ . (3.17)

Here we are restricting to the symmetric part of f , since the anti-symmetric one of
the coinciding point limit of γ̂ b

a γ̂bc is either zero classically or fixed by the commu-
tation relation in the quantum theory (3.16).

Let us consider the effect of a gauge transformation, i.e a linearized diffeomor-
phism

γ̂ab → γ̂ab + δγ̂ab , (3.18)

with δγ̂ab = −2∇ w(a b). It should be noted that, at this level, we are considering
the role of a classical gauge generator, i.e a simple vector field w. In the following

59



Chapter 3. Quantum theory

section, we will consider the introduction of a ghost field, by actually promoting w
to a quantum field ĉ. By substitution in (3.17), we consider

Ô2(γ̂ + δγ̂;f) = Ô2(γ̂;f) + δÔ2(γ̂;f) .

Once again, Ô2 is gauge-invariant if and only if δÔ2 = 0. To exploit this requirement,
we isolate the contributions coming from w, getting

δÔ2(γ̂;f) =

∫
[γ̂ b

a (x)δγ̂bc(x
′)+δγ̂ b

a (x)γ̂bc(x
′)]f (ac)(x)δ4(x−x′)√−g

√
−g′d4xd4x′

By substitution of δγ̂, and exploiting the integration of the delta distribution, we
get

δÔ2(γ̂;f) = −4

∫
γ̂ b
a ∇(bwc)f

(ac)√−gd4x =

= −2

∫
γ̂ b
a ∇bwcf

(ac)√−gd4x− 2

∫
γ̂ b
a ∇cwbf

(ac)√−gd4x .

We integrate it by parts. Since supp(f) is compact and the integration is taken
along the entire spacetime, the boundary terms can be neglected, thus giving

δÔ2(γ̂;f) = +2

∫
wc∇b(γ̂

b
a f

(ac))
√−gd4x+ 2

∫
wb∇c(γ̂

b
a f

(ac))
√−gd4x

Renaming the dummy indices, it follows that

δÔ2(γ̂;f) = +2

∫
wc

[
∇b(γ̂

b
a f

(ac)) +∇b(γ̂
c

a f
(ab))

]√−gd4x

Since w is an arbitrary vector field, the requirement δÔ2 = 0 gives the following
condition

∇bγ̂abf
(ac) + γ̂ab∇bf (ac) +∇bγ̂

c
a f

(ab) = 0 , (3.19)

being ∇af
(ab) = 0. However, (3.19) is not trivially satisfied by test tensors, without

considering any additional condition for γ̂ab.
Before discussing the previous result (3.19), we generalize it, by not restricting

to any particular contraction of γ̂abγ̂cd. To this extent, we consider the following
squared observable

Ô2(γ̂;f) =

∫
γ̂ab(x)γ̂cd(x

′)f (ac)(bd)(x)δ4(x− x′)
√−g

√
−g′d4xd4x′ . (3.20)

Here, we have introduced a generalized test tensor which encodes all the possible
contractions of the perturbation fields. For instance (3.20) reduces to the first ex-
ample (3.17), by taking

f (ac)(bd) = f (ac)gbd .

We proceed in the same way, by inserting (3.18) in (3.20) and isolating the
first-order gauge contribution

δÔ2(γ̂;f) = −4

∫
γ̂ab∇(cwd)f

(ac)(bd)√−gd4x
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Exploiting the symmetrization and integrating by parts, we get

δÔ2(γ̂;f) = +2

∫
wd∇c(γ̂abf

(ac)(bd))
√−gd4x+ 2

∫
wc∇d(γ̂abf

(ac)(bd))
√−gd4x ,

renaming the dummy indices, it follows that

δÔ2(γ̂;f) = +2

∫
wd

[
∇c(γ̂abf

(ac)(bd)) +∇c(γ̂abf
(ad)(bc))

]√−gd4x

Once again, w is an arbitrary vector field, hence the requirement δÔ2 = 0 gives the
following condition

∇cγ̂ab

(
f (ac)(bd) + f (ad)(bc)

)
+ γ̂ab∇c

(
f (ac)(bd) + f (ad)(bc)

)
= 0 . (3.21)

A possible solution to (3.21) would be given by the requirement that the generalized
test tensor is anti-symmetric with respect to its second and fourth indices, such that

f (ac)(bd) = −f (ad)(bc) . (3.22)

However, this solution makes everything trivial, since under (3.22) the squared ob-
servable (3.20) always vanishes.

In this section we have showed that the approach given by [18] has a non-trivial
extension to the case of squared gauge-invariant observables, for which the condition
∇af

(ab) = 0 is not enough. Unless we restrict the space of configuration fields γab
to achieve (3.21), the construction of Ô2 and so on, still requires the introduction of
ghost fields and the quantization via BRST approach.

3.4 BRST quantization

We discuss an alternative approach to treat the gauge freedom of linearized gravity,
which comes up to be very useful when dealing with non-linear gauge-invariant
observable. We will consider the role of gauge-breaking terms, introducing the notion
of ghost field while reviewing the quantization procedure by means of the BRST
approach.

We start from the action of linearized gravity [1]

Slg =
1

32πG

∫
[12γ

ab□γab − 1
4γ

a
a□γ

b
b + (∇aγab − 1

2∇bγ
a
a)

2 + γabRacbdγ
cd+

+ γabR
bcγac − γccγ

abRab − 1
2Rγabγ

ab + 1
4R(γ

a
a)

2]
√−gd4x .

(3.23)

As stressed before, this action is invariant with respect to gauge transformations
given by linearized diffeomorphisms3

δwγab = 2∇(awb) . (3.24)

We consider the generalized de Donder condition

GdD
b (γ)

.
= ∇aγab − k∇bγ

a
a = 0 , (3.25)

3Here we have slightly changed the prescription adopted in the previous sections, by absorbing
the minus sign in the generator w.
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with k ̸= 1. According the arguments of section 2.3, for the linearized theory we
will always assume that k = 1

2 . However, we present the following discussion on a
more general ground.

In order to impose it directly in the action (3.23), we introduce the following
gauge-fixing term by means of a auxiliary field ba [1, 17]

Sgf =
1

32πG

∫
ba[∇bγab − k∇aγ

b
b +

α
2 ba]

√−gd4x , (3.26)

with α a gauge parameter. This term can be obtained by squaring (3.25), to form a
scalar object, i.e a candidate to be considered in the action. Indeed, (3.26) correctly
reduces to (3.25) by imposing the equations motion of b, which gives

Sgf = − 1

32πG

∫
1

2α
[∇aγab − k∇bγ

a
a ][∇cγ

cb − k∇bγcc ]
√−gd4x .

In order to discuss a gauge-invariant quantization, while preserving the hyper-
bolic form of the field equations (2.25) (thus ensuring the existence of the causal
propagator), we need to compensate the gauge-breaking term (3.26). This opera-
tion can be successfully achieved by replacing the original gauge-symmetry by a new
one, called BRS symmetry.

The BRS transformation can be obtained by the identification of the classical
gauge generator w with a new field, called the Fadeev-Popov ghost c [38, 17]. Hence
(3.24), reads

δcγab = 2∇(acb) . (3.27)

The ghost action can be actually derived by considering the effect of the BRS trans-
formation (3.27) on (3.25). Then, one can form a scalar quantity by multiplication
of this result with an anti-ghost field c̄, thus giving [17]

Sgh = − i

32πG

∫
∇ac̄b[∇acb +∇bca − gab∇dc

d]
√−gd4x , (3.28)

which compensate the symmetry breaking induced by (3.26). It should be noted
that the ghost c and the anti-ghost c̄ are two different fields, given [38]

(ca)∗ = ca , (c̄a)∗ = c̄a .

By means of property (2.35), expression (3.28) actually reduces to

Sgh =
i

32πG

∫
c̄a[gab□+Rab]c

b√−gd4x . (3.29)

The linearized BRST transformation for the family F = {γ, b, c, c̄} is implemented
by considering an operator s, acting on fields as an infinitesimal gauge transformation
[16, 27]

sγab = (∇acb +∇bca) ,

sba = 0 ,

sc̄a = iba ,

sca = 0 ,
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which satisfies for X,Y ∈ F and a, b ∈ C

s(aX + bY ) = as(X) + bs(Y ) ,

s(XY ) = s(X)Y + ϵ(X)Xs(Y ) ,

s(X∗) = ϵ(X)[s(X)]∗ ,

[s,∇a] = 0 .

Here ϵ(X) is a number equal to 1 or −1, according to whether X represents a
bosonic or fermionic field of the family F [38].

From the previous definition it follows immediately that the BRS operator is
nilpotent [38, 16]

s2 = 0 , (3.30)

By definition, the action of linearized gravity is invariant with respect to the BRS-
symmetry

s(Slg) = 0 .

On the other hand, one can show that the gauge-fixing and ghost terms lies in the
image of s [16]

Sgf + Sgh = − i

32πG

∫
s[c̄a(∇bγab − k∇aγ

b
b +

α
2 ba)]

√−gd4x .

Hence, property (3.30) ensures that the introduction of ghost fields actually com-
pensates the gauge-breaking terms, thus ensuring

s(Sgf + Sgh) = 0 .

Thus, the complete action is BRS-invariant

s(Slg + Sgf + Sgh) = 0 .

By the computation of the variational derivative of (3.23), (3.26) and (3.29), we
obtain the equations of motion for γ and c. For a vacuum spacetime (1.6), we get

□γ̄ab − 2Rcabdγ̄
cd − 2∇(a∇cγ̄b)c + gab∇c∇dγ̄cd −∇(abb) + kgab∇cbc = 0 , (3.31)

together with the constraint

ba = − 1
α(∇bγab − k∇aγ

b
b) , (3.32)

while for ghost fields
□ca = 0 , □c̄a = 0 . (3.33)

By substitution of (3.32) in (3.31), with gauge parameters α = k = 1
2 , we obtain

that
P cd
ab γ̄cd = □γ̄ab − 2Rcabdγ̄

cd = 0 . (3.34)

Equations (3.34) and (3.33) are now normally hyperbolic, ensuring the existence
and uniqueness of the solutions of the respective Cauchy problems, by the same
argument of sections 2.3.2 and 2.3.3. It should be noticed that the BRS approach
have led to the same equation of motion of linearized gravity (2.25), by exploiting
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the de Donder condition through the auxiliary field ba while preserving the gauge
symmetry with the introduction of ghost fields. Indeed, equations (3.31), (3.32)
and (3.33) can be viewed in terms of a matrix of differential operators [7]. Let us
consider a map R, which associates to a tensor field T its redefined counterpart as
in (2.12), such that

(RT )ab .
= Tab −

1

2
gabT

c
c . (3.35)

Before going further, we review some useful properties of (3.35) [7].

1. From (3.35) we can immediately observe that R is idempotent, being R2 = I.

2. On vacuum spacetimes (3.34) implies that □γaa = □γ̄bb = 0, from which it
follows that R actually commutes with the Lichnerowicz operator P cd

ab .

Let us consider the following tensor differential operator

Aabcd
.
= (gacgbd□− 2Rcabd − 2gd(a∇b)∇c + gab∇c∇d)R ,

which acts on γab, being actually involved in part of (3.31) and giving the equations
of motion (2.28), for a redefined perturbation field γ̄ab. Hence, for α = k = 1

2 and by
composition with (3.35), we can group the equations of motions for F = {γ, b, c, c̄}
into a matrix of differential operators K, such that

K(F )
.
=


A cd

ab −Rgc ∇(a b) 0 0

∇dR 1
2 0 0

0 0 0 −i□
0 0 i□ 0




γcd

bc

ca

c̄a

 = 0 . (3.36)

By direct computations we observe that

A cd
ab = P cd

ab R− 2Rgc ∇(a b)∇dR ,

which, by substitution in (3.36), gives
P cd
ab R− 2Rg ∇c

(a b)∇dR −Rgc ∇(a b) 0 0

∇dR 1
2 0 0

0 0 0 −i□
0 0 i□ 0




γcd

bc

ca

c̄a

 = 0 . (3.37)

Since the equations of motion are normally hyperbolic, the theorem of section 2.3.3
and its counterpart for vector fields [3] guarantee the existence and uniqueness of
the advanced and retarded solutions associated to the perturbation and ghost fields,
respectively G± c′d′

ab (x, x′) and E± b
a (x, x′), as fundamental solutions of [34]

P ef
ab G± c′d′

ef (x, x′) = g g
(c′ d′)

a b δ4(x, x′) ,

□E± b′
a (x, x′) = g b′

a δ4(x, x′) ,
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with the causality requirement such that, for any test tensor f , the propagators G−,
E− and G+, E+ are respectively supported in the casual past and future of suppf
(see figure 2.1 for a geometric intuition).

From the knowledge of the fundamental solutions, we can obtain the matrix
expression of the propagators ∆±(x, x′) acting on F , by inverting the system of
equations of motion (3.37), thus getting [7]

∆± =


RG± c′d′

ab +2RG± d′e′

ab Rg ∇c′

(d′ e′) 0 0

−2∇bG± c′d′

ab −4∇bG± c′d′

ab Rg ∇c′

(d′ e′) + 2g c′
a δ4 0 0

0 0 0 −iE± b′
a

0 0 iE± b′
a 0

 .

From the knowledge of propagators, we can achieve the quantization of the theory by
means of the algebraic approach, already described in the previous section. Indeed,
we define the smeared perturbation and ghost fields as

γ̂(f) =

∫
γ̂ab(x)f

ab(x)
√−gd4x , (3.38)

ĉ(h) =

∫
ĉa(x)h

a(x)
√−gd4x , (3.39)

ˆ̄c(h) =

∫
ˆ̄ca(x)h

a(x)
√−gd4x , (3.40)

promoting them to be generators of a unital ∗-algebra F(M), with unity Î, whose
abstract structure is fixed by the following set of canonical commutation relations
[27]

[γ̂(f), γ̂(f ′)] = iG(f ,f ′)Î ,

{ĉ(h), ˆ̄c(h′)} = iE(h,h′)Î ,
{ĉ(h), ĉ(h′)} = {ˆ̄c(h), ˆ̄c(h′)} = 0 ,

with G and E the perturbation and ghost causal propagators, respectively defined
as G

.
= G− −G+ and E

.
= E− −E+. Moreover, {·, ·} denote the anti-commutator,

whose action is given by

{ĉ(h), ĉ(h′)} .
= ĉ(h)ĉ(h′) + ĉ(h′)ĉ(h) .

On the other hand, since the auxiliary field ba is related to the derivative of the
perturbation field by (3.32), its algebraic properties can actually be derived from
those of γab.

Since the smeared fields (3.38), (3.39) and (3.40), together with Î are the gen-
erators of the algebra, the elements of F(M) are polynomials in γ̂, ĉ, ˆ̄c and their
derivatives. However the ghost fields has been introduced as auxiliary objects with
no physical meaning. Hence, it necessary to account for this observation by stat-
ing that (gauge-invariant) observables do not take contributions from the auxiliary
fields, requiring to be given by those functional which are non-trivially s-invariant.
Indeed we define the space of gauge-invariant observables as [14]

G (M)
.
= Ker(s)/ Im(s) (3.41)
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3.5 Quantum states

In the previous sections we have firstly described A(M), which acts as the algebra of
observables, which are gauge-invariant at linear order. Through the BRST approach
it has been possible to go a little further, actually constructing gauge-invariant
observables from polynomials of fields and ghosts, which generate the algebra F(M).

Let us consider an observable Ô. We would like to link the abstract algebraic
structure encoded by the commutation relations (3.16) with the physical reality, by
predicting the results of an hypothetical measure of Ô. Indeed, the bridge between
any quantum theory and its experimental prediction is provided by the notion of
quantum state, which allows the computation of the expectation value ⟨Ô⟩.

We call quantum state, or simply state, any linear functional ω on the ∗-algebra
of observables [31]

ω : F(M) → C . (3.42)

Through ω we associate to any observable in F(M) its expectation value ⟨·⟩ω = ω(·).
Moreover, we say that ω is normalized if ω(Î) = 1, with Î ∈ F(M).

The algebra F(M) is richer than A(M), since it also describes the contribution
coming from ghost fields. Actually, the state ω may acts differently on γ̂ and ĉ, as
we shall discuss in details now.

Let us consider, as a first example, an element of F(M), built as a polynomial
of γ̂. We define the n-point correlation function of the state as a distribution acting
on test tensors of Γ0(V)

ωn(f1,f2, ...,fn)
.
= ω(γ̂(f1)γ̂(f2) · · · γ̂(fn)) , (3.43)

given by4

ωn(f1,f2, ...,fn) =

∫
ωa1...a2n(x1, x2, ..., xn)f

a1a2
1 (x1)...f

a2n−1a2n
n (xn)dvolg

n
g ,

and with
dvolgng = (−g(x1))1/2 · · · (−g(xn))1/2d4x1 · · · d4xn .

A state ω is said quasi-free if its behaviour is fixed by the two-point correlation
function ω2(f1,f2) [31], by means of the Wick theorem [46]

ωn(f1,f2, ...,fn) = 0 for n odd,

ωn(f1,f2, ...,fn) =
∑
part.

ω2(fi1 ,fi2) · · · ω2(fin−1
,fin) for n even,

with the sum to be taken among all the possible partitions of {1, 2, ..., n}. The
notion of quasi-free states have an important physical interpretation in terms of
those state which admits a representation of the algebra of observables in terms of
the one-particle structure [22]. More details will be given in the following section.

The previous definition allows us to successfully study a quasi-free state by means
of ω2, whose distributional kernel can be written as

ωabc′d′(x, x
′) = ⟨γ̂ab(x)γ̂c′d′(x′)⟩ω ,

4We drop the subscript for the integral kernel of ωn, since the number of indexes is far enough
to distinguish ω2 from ω4 and so on.
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according to the notation fixed by (3.43). However, the choice of ω2 is not totally
arbitrary, since its anti-symmetric part is completely fixed by the canonical commu-
tation relation

ω2(f ,f
′)− ω2(f

′,f) = iG(f ,f ′) ,

while being a bi-solution of the equations of motion (2.25)

ω2(P f̄ ,f ′) = ω2(f ,P f̄ ′) = 0 . (3.44)

Once again, the geometrical properties of the background spacetime (M, g) together
with field equations (2.25) are fundamental, since they both affect the computation
of ω and the result of the expectation value of observables.

Mutatis mutandis, we can define the action of the state ω on the ghost fields
contributions in terms of the two-point correlation function

ωab′(x, x
′) = ⟨ĉa(x)ĉb(x′)⟩ω . (3.45)

Actually, this prescription satisfies the same properties of ωabc′d′ , preserving the
equations of motion on both its arguments and having its anti-symmetric part fixed
by the causal propagator E. Again, if the state is quasi-free, we can use the Wick
theorem to completely describe its behaviour in terms of (3.45).

Since the equation of motions of γ̂ab are not mixed with those of ĉa and ˆ̄ca (3.36),
we can assume that a quasi-free state ω shows two independent contributions, written
in terms of the two-point functions ωabc′d′ and ωab′ . This observation allows us to
write ω in the following matrix form [7]

ω(F ) =


Rωabc′d′ +2Rωabd′e′Rg ∇c′(d′ e′) 0 0

−2∇bωabc′d′ −4∇bωabc′d′Rg ∇c′(d′ e′) 0 0

0 0 0 −iωab′

0 0 iωab′ 0

 , (3.46)

with F the family of fields already considered in (3.36). For this very reason, we
will separately discuss the construction of Hadamard states for the gravitational and
ghost fields.

Before ending this section, we point out that, when dealing with gauge theories
such as linearized gravity, the positivity requirement of states need to be dropped
on F . The reason for this choice can traced back to the presence of ghost fields,
which are elements of F(M) actually contributing to states with negative norm.
Nevertheless, positivity is restored when working with gauge invariant observables,
namely on the cohomology of s (3.41), on which

ω(O∗O) ≥ 0 for any O ∈ G (M) (3.47)

Indeed, through (3.47) we are actually requiring that ω must be compatible with the
definition of G (M), since unphysical fields like ĉ cannot contribute to the expectation
value ⟨O⟩ω of a gauge-invariant observable.
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3.5.1 Hadamard quasi-free states for linearized gravity

These sections are devoted to the discussion of Hadamard states and their properties
for a gravitational perturbation field. Mutatis mutandis, the ghosts contribution
will be separately reviewed in 3.5.5, since in any case it will play a pivotal role in
establishing the role of the stress-energy tensor Tab in black hole evaporation.

Let us discuss the physical property of ω2, by first giving some definition. We
call bi-tensor, any (h, l) tensor T in (M, g) which depends upon two points of the
spacetime x, x′. Indeed, we adopt the convention of [44, 22] denoting with a prime
all the indices referred to the label x′. Moreover, we denote the coinciding point
limit of T as

[Tab] = lim
x′→x

Tab′(x, x
′)

We will take advantage of this formalism to better characterize the two-point corre-
lation function ωab′(x, x

′).
Due to the distributional character of the configuration field γab(x), the integral

kernel of ω2 diverges in the coincide limit [ωab′ ]. However, the presence of divergences
of this kind allows us to give a criterion to select all the physical admissible states.

Let us consider a subset O ⊂ M. We say that O is geodesically convex if each two
points x, y ∈ O are connected by a unique geodesic, which is completely contained
in O [22].

Given any two point x, x′ on a convex subspace O, we define the Synge’s world
function [34] the bi-scalar

σ(x, x′) =
1

2
(λ1 − λ0)

∫ λ1

λ0

gabt
atbdλ , (3.48)

with t the vector field tangent to the unique geodesic l, which links x to x′ in O,
with the integration to be taken along l. Here, λ is an affine parameter of l, such
that l(λ0) = x and l(λ1) = x′. If the geodesic is time-like, for instance, a good choice
of the affine parameter is given by the proper time τ , for which σ(x, x′) = −1

2(∆τ)
2.

Indeed, the world function (3.48) is half the squared geodesic distance between x
and x′. Finally, definition (3.48) admits a well-posed definition in terms of the
exponential map on TxM [22].

The world function satisfies several properties [44]. Among these we recall

[σ] = 0 ,

∇aσ∇aσ = 2σ . (3.49)

The half squared geodesic distance allows us to give a definition of physical admis-
sible states on curved spacetimes. Indeed, we restrict our attention to those state
whose singularities have a “physical meaning”, by actually mimicking the divergent
behaviour of ω on the Minkowski background.

Let ω2 be the two-point correlation function of a state ω, and t(x) be a time
function on a time-orientable spacetime (M, g). Let

σϵ(x, x
′) .= σ(x, x′) + 2iϵ(t(x)− t(x′)) + ϵ2 .

We call ω a quasi-free Hadamard state, if

ωabc′d′(x, x
′) = lim

ϵ↓0
1

8π2
(
hϵabc′d′(x, x

′) + wabc′d′(x, x
′)
)
, (3.50)
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The bi-tensor h is called Hadamard parametrix, which is given by

hϵabc′d′(x, x
′) .=

uabc′d′(x, x
′)

σϵ(x, x′)
+ vabc′d′(x, x

′) log
(
σϵ(x, x

′)
λ2

)
, (3.51)

with λ an arbitrary length scale. The notion of quasi-free Hadamard state is the clos-
est one to the idea of vacuum state of the flat theory. However, on curved spacetime
the pure notion of vacuum cannot be fully recovered, since the ubiquitous presence of
gravitational curvature gives rise to particle-production phenomena, which depend
upon the choice of the reference frame [8].

On one hand, wabcd(x, x
′) is any arbitrary smooth symmetric bi-tensor, which is

also regular for x′ → x. The freedom of w actually represents the arbitrariness of
the notion of vacuum on curved spacetimes. Indeed, different w leads to different
results of ⟨O⟩w, which are related to different choices of states. This fact is deeply
involved in the gravitational production of particles, which will be further discussed
in section 3.6, by means of the existence of non-equivalent GNS representations of
the same algebra of observables.

On the other hand, the Hadamard parametrix habc′d′(x, x
′) completely describes

the divergent behaviour of the state. Both u and v are smooth bi-tensors, hence, the
singularities of the coinciding point limit of ω2 are carried by the world function σ.
Moreover, they are universal, not depending from the choice of the state, completely
encoded by w.

Since w is symmetric, the information regarding the dynamics of the quantum
field γ̂ is stored in h, by means of the following prescription

iGabc′d′(x, x
′) = lim

ϵ↓0
(hϵabc′d′ − h−ϵ

c′d′ab(x
′, x))

3.5.2 Hadamard recursion relations

In the previous section we have introduced the notion of Hadamard quasi-free states,
by means of the point-splitting prescription (3.50). However, further details on u
and v can be exploited.

Let us consider the tensor differential operator associated with the Lichnerowicz
equation of motion (2.25)

P ab
cd = δac δ

b
d□− 2Ra b

cd .

Since we are going to work with bi-tensors, we denote P ab
cd , P

a′b′
c′d′ the tensor

operators which respectively act on x and x′. As previously stressed by property
(3.44), we shall work with those states which preserve the equations of motion.
Indeed, given ω2 the two-point function of ω, its distributional kernel satisfies the
field equations

P ab
ef ωabc′d′ = 0, P c′d′

e′f ′ ωabc′d′ = 0 .

If ω2 satisfies the Hadamard condition (3.50), the equations of motion read

P ab
ef (h

ϵ
abc′d′ + wabc′d′) = 0 .

By substitution of (3.51), the equation of motion reads

P ab
ef

(
uabc′d′

σϵ
+ vabc′d′ log

(σϵ
λ2

))
= −P ab

ef (wabc′d′) . (3.52)
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Firstly, we observe that h and w does not separately satisfy the equation of motion.
This fact will play a pivotal role in the following chapter, being responsible for the
conservation anomaly of the stress-energy tensor.

Since w is smooth, then also the left-hand side of (3.52) is. By definition, both
u and v are regular, thus, to achieve smoothness, we require that the singularities
carried by 1/σ and log σ in (3.52) need to cancel each other out. We now the exploit
the explicit computations behind this argument, which will allow us to derive a set
of equations for u and v.

As a first step, we consider the action of curved wave operator on the Hadamard
parametrix (□h)abc′d′ . Without loss of generality, we assume λ = 1. The v contri-
bution reads

δeaδ
f
b□(vefc′d′ log σ) = ∇µ (∇µvabc′d′ log σ + vabc′d′∇µ log σ) .

Using the Leibniz rule, we obtain

□(v log σ)abc′d′ = □vabc′d′ log σ + 2∇µvabc′d′∇µ log σ + vabc′d′□ log σ . (3.53)

Moreover, ∇µ log σ = 1
σ∇µσ. Taking the second derivative leads to

□ log σ = 1
σ□σ − 1

σ2∇µσ∇µσ .

Finally, by substitution in (3.53), we exploit property (3.49), thus getting

□(v log σ)abc′d′ = □vabc′d′ log σ + 2∇µvabc′d′∇µ log σ + vabc′d′
□σ
σ − vabc′d′

2
σ .

By considering the Riemann tensor term Re f
ab vefc′d, we can extend this last result

to P , which reads

P (v log σ)abc′d′ = Pvabc′d′ log σ + 2∇µvabc′d′
∇µσ
σ + vabc′d′

□σ
σ − vabc′d′

2
σ . (3.54)

Similarly, we consider the u contribution, which gives

□
(u
σ

)
abc′d′

= ∇µ
(
1
σ∇µuabc′d′ − 1

σ2uabc′d′∇µσ
)
.

Once again, using the Leibniz rule together with property (3.49) and adding the
Riemann tensor term, we obtain

P
(
u
σ

)
abc′d′

= 1
σPuabc′d′ − 2

σ2∇µuabc′d′∇µσ + uabc′d′
4
σ2 − □σ

σ2 uabc′d′ . (3.55)

This equation does not show any term proportional to log σ. Since the only contri-
bution of this kind is carried by (3.54), to ensure (3.52) we need to require

(Pv)abc′d′ = 0 . (3.56)

Since v is regular on the coinciding limit, we complete our discussion by considering
its series expansion in σ

vabc′d′(x, x
′) =

∞∑
n=0

v
(n)
abc′d′(x, x

′)σn . (3.57)
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This expansion is not unique, unless we require v to satisfies the equation of motion
(3.56). To show this, we substitute (3.57) and (3.56) in (3.54), thus getting

P (v log σ)abc′d′ = 2
∑
n

∇µv
(n)
abc′d′σ

n−1∇µσ + 4
∑
n

nv
(n)
abc′d′σ

n−1+

+
∑
n

v
(n)
abc′d′σ

n−1□σ − 2
∑
n

v
(n)
abc′d′σ

n−1 .
(3.58)

Adding this expression to (3.55), we ensure that (Ph)abc′d′ is regular by equating
order by order the divergent contributions of (3.55) and (3.58). For those terms
which are singular by σ−2, σ−1 and log σ we respectively get

2∇µσ∇µuabc′d′ + (□− 4)uabc′d′ = 0 , (3.59)

Puabc′d′ +□σv(0)abc′d′ − 2v
(0)
abc′d′ + 2∇µσ∇µv

(0)
abc′d′ = 0 , (3.60)

Pvabc′d′ = 0 . (3.61)

These equations are called Hadamard recursion relations [22]. Moreover, a complete

characterization of v
(n)
abc′d′ can be obtained by considering the series expansion (3.57)

together with equation (3.61) [22, 23], giving the third recursion relation in the form

Pv
(n)
abc′d′ + 2(n+ 1)∇µσ∇µv

(n+1)
abc′d′ + (n+ 1)(□σ + 2n)v

(n+1)
abc′d′ = 0 . (3.62)

The Hadamard recursion relations can be solved, provided some suitable initial con-
ditions. By comparing the expression of ω2 with the two-point correlation function
of the flat theory, one requires that [23]

[uabc′d′ ] = 1 .

Under this initial data, the solution to (3.59) can be written in terms of the Van
Vleck-Morette determinant [22, 44, 1]

∆(x, x′) .=
det(∇b′∇aσ(x, x

′))√−g√−g′ , (3.63)

with g′ the metric determinant evaluated at x′, such that [1]

uabc′d′(x, x
′) = ∆(x, x′)1/2gc′(agb)d′ .

Knowing u, it is possible to derive the initial condition for (3.60), by considering its
coinciding point limit which gives

[v
(0)
abc′d′ ] =

1

2
[Puabc′d′ ] .

This procedure can be iterated to (3.62), finally leading to

[v
(n+1)
abc′d′ ] =

1

2(n+ 1)(n+ 2)
[Pv

(n)
abc′d′ ] .

To summarize, in this section we have built a set of equations and initial condi-
tion which gives u and v as solutions, thus fixing the knowledge of the Hadamard
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parametrix h, namely of the divergences of the two-point correlation function of lin-
earized gravity. These results has been made possible by restricting to those states
which satisfies the Hadamard condition (3.50), which shows a universal divergent
behaviour, being independent from w and thus from the choice of the state, while
still deeply related to the shape of the spacetime background. Finally, we point out
that this procedure does not depend from the choice of the length parameter λ [23],
whose role will be briefly discussed in section 3.5.4.

3.5.3 Taylor expansion around the coinciding point limit

Following the approach of [1], we can obtain further details and constraints on v(n),
which will get useful in the computation of the backreaction of the quantum field γ.
We start this section giving a useful definition.

Let us consider a vector field V ∈ TM. Let TxM and Tx′M be two tangent
spaces, i.e two fibers of TM respectively on x and x′, with sections V (x) and V (x′).
We call parallel propagator [44], the map

p : TxM → Tx′M ,

which parallel-transports V (x) to V (x′) along the unique geodesic that links x to
x′, such that

V a′(x′) = pa
′
a(x, x

′)V a(x) . (3.64)

Moreover, the coinciding point limit of p trivially reduces to [pa
′
b] = δab .

As a first step, we consider further expansion of v(n) as a Taylor series in σ, with
x near x′. Actually, this reads

v
(n)
abc′d′(x, x

′) = pcc′p
d
d′ [q

(n)
abcd(x)+∇µq

(n)
abcd(x)σ

µ+ 1
2∇ν∇µq

(n)
abcd(x)σ

µσν + ... ] . (3.65)

To notation extent, we define zabcd(x)
.
= q

(1)
abcd(x). By substitution of (3.65) into the

Hadamard recursion relations, it can be shown that [1]

z cd
ab = 1

48(g
c

a g
d

b + g d
a g

c
b − gabg

cd)( 1
30RpqrsR

pqrs − 1
30RpqR

pq + 1
12R

2 + 1
5□R)+

− 1
24(□+R)V cd

ab + 1
8V

pq
ab V cd

pq + 1
48{(□+R)V p

abp − 3V pq
ab V r

pqr }+
+ 1

24(R
(c

pq(a R
d)pq

b) − g
(c

(a Rb)pqrR
d)pqr) .

For our purposes, the equation of motion (2.25) gives V cd
ab = −2R

(c d)
a b . Tracing

z, we get

zacbc =
47
720g

abRpqrsRpqrs , (3.66)

zabcc = − 1
720g

abRpqrsRpqrs . (3.67)

In the following chapter, we will discuss the role of these relations in computation
of the contribution of Tab to the evaporation a spherically symmetric black hole.
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3.5.4 Wick products and regularization

In this section we discuss the problem of the extension of the algebra F(M) to
the coinciding point limit of those observables at least quadratic in the quantum
field γ̂ab(x). In section 3.3.1, we have already discussed that the construction of
gauge-invariant squared observables brings some difficulty in the coinciding point
limit. However, the introduction of ghost fields allowed us to simply write γ̂2(f)
without requiring anything on f and ensuring gauge-invariance when restricting to
the cohomology of s.

During this section we take advantage of the notion of Hadamard quasi-free state
(3.50), in order to regularize the expectation value of the simplest observable, e.g
γ̂2(f).

Let us consider a squared observable obtained by smearing the configuration
γ̂abγ̂c′d′ . We compute its expectation value, which is given by the two-points corre-
lation function

⟨γ̂2(f)⟩ω =

∫
ωabc′d′(x, x

′)fabc
′d′(x)δ4(x− x′)

√−g
√

−g′d4xd4x′ ,

at this level, we require ω to be a quasi-free state. We have already pointed out that
the distributional character of γ̂ab(x) brings a singularity in the coinciding point
limit [ωabc′d′ ]. Indeed,

⟨[γ̂ab(x)γ̂c′d′(x′)]⟩ω /∈ F(M) .

In quantum field theory on Minkowski spacetime, this problem is usually overcome
with the introduction of the normal ordering prescription, by means of a divergences
subtraction [46]. This procedure can be generalized to curved spacetimes following
the so-called Hadamard regularization.

Let us consider an Hadamard quasi-free state ω, whose two-points correlation
function is recalled

ωabc′d′(x, x
′) = lim

ϵ↓0
1

8π2
(
hϵabc′d′(x, x

′) + wabc′d′(x, x
′)
)
.

In section 3.5.1 we have stated that the divergent behaviour of ωabc′d′(x, x
′) is com-

pletely described by the Hadamard parametrix h. To regularize the expectation
value of γ̂2, we subtract the h term, by means of the point-splitting procedure [22,
31]

: γ̂ab(x)γ̂c′d′(x
′) : .= γ̂ab(x)γ̂c′d′(x

′)− 1
8π2habc′d′(x, x

′)Î− gabgc′d′H(x, x′)Î , (3.68)

with H(x, x′) any bi-scalar, regular on the coinciding point limit. This procedure
actually makes sense, being independent from the choice of the Hadamard state, for
which, we recall, the divergent behaviour encoded by the parametrix h is universal.
Hence, we start from the expectation value

⟨: γ̂ab(x)γ̂c′d′(x′) :⟩ω =
1

8π2
wabc′d′(x, x

′)− gabgc′d′H(x, x′) ,

to get a regularized Wick monomial

⟨: γ̂ab(x)γ̂cd(x) :⟩ω =
1

8π2
[wabcd]− gabgcd[H] , (3.69)
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which, due to the smoothness of w, is finally well-behaved on the coinciding point
limit x′ → x, which gives5

⟨: γ̂2(f) :⟩ω =
1

8π2

∫
[wabcd](x)f

abcd(x)
√−gd4x .

The point-splitting procedure can be iterated to higher orders terms, which allows
the definition of the n-th Wick monomials from

: γ̂(f1) · · · γ̂(fn) : .=
∫

: γ̂a1b1(x1) · · · γ̂anbn(xn) : fa1b1(x1) · · · fanbn(xn)dvolng ,

where the normal-ordered kernel can be obtained by means of the Wick theorem
[22, 31] and

dvolgng = (−g(x1))1/2 · · · (−g(xn))1/2d4x1 · · · d4xn .
We should note that, following the BRST approach, there is no need to require
additional conditions on the test tensors. In contrast to the approach of section
3.3.1, : γ̂2(f) : is not gauge-invariant. This property is achieved by considering
the observables as those object which are s-invariant, where the gauge-dependent
contribution are compensated by ghost fields.

From this discussion we can observe how the singularities subtraction is made
possible by the property of Hadamard states to have a universal divergent behaviour.
The possibility to regularize the Wick monomials guarantees that the algebra of ob-
servables is well-defined even in the coinciding point limit, allowing for the inclusion
of : γ̂n(f) : in the algebra of fields F(M). Moreover, when considering the flat limit,
the Hadamard regularization procedure correctly reduces to the the normal ordering
one, where putting all the annihilation operators to the right of the creation ones
actually leads to the subtraction of the contribution of the Minkowski vacuum.

Before ending this section we point out that the point-splitting prescription (3.68)
is not unique at all. On one hand, it is always possible to consider any arbitrary but
regular bi-scalar H, which does not modify the divergences subtraction of h, while
contributing to the expectation value (3.69). On the other hand, since v is smooth
it is always possible to choice a length parameter λ ̸= 1 which contributes to the
Hadamard parametrix (3.51), with no need to be subtracted in the point-splitting
prescription (3.68), being regular for x′ → x. Finally, these considerations can be
resumed by stating that there is at least a two-fold regularization freedom, which
gives the following contributions to the expectation value of the Wick monomial

⟨: γ̂ab(x)γ̂cd(x) :⟩ω =
1

8π2
[wabcd]− 2 log(λ)[vabcd]− gabgcd[H] .

This freedom will actually play a pivotal role in the following chapter, where it
will be exploited to get regularized and covariantly conserved contribution of the
stress-energy tensor, while producing an anomaly in its trace.

5As discussed in section 3.3.1, the coinciding point limit of observables beyond linear order
require the use of higher rank test tensors, which can describe the freedom in contracting the
configuration fields
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3.5.5 Hadamard states and ghost fields

In this section we briefly discuss the property of Hadamard states for ghost fields.
Previously we have considered two vector fields c, c̄, which on a vacuum spacetime
(1.6) satisfy

□ca = 0, □c̄a = 0 .

The quantization has be achieved by means of the algebraic approach, already dis-
cussed in section 3.4, giving

{ĉa(x), ˆ̄cb(x′)} = iEab(x, x
′)Î ,

{ĉa(x), ĉb(x′)} = {ˆ̄ca(x), ˆ̄cb(x′)} = 0 ,

thus giving rise to the unital ∗-algebra of ghost fields, which we shall denote C(M)
and which is generated by ĉ(h), ˆ̄c(h) and Î.

Previously, we have defined the quantum state ω as functional on the algebra of
fields F (3.42), which contains both the contribution coming from ghosts and the
perturbation field γ̂. We are now interested in discussing the notion of Hadamard
state on C(M). Indeed, we consider a quasi-free state ω, whose two-point correlation
function is given by

ωab′(x, x
′) = ⟨ĉa(x)ĉb(x′)⟩ω .

We call ω a quasi-free Hadamard state if its two-point function satisfies

ωab′(x, x
′) = lim

ϵ↓0
i

8π2

(
h̃ϵab′(x, x

′) + w̃ab′(x, x
′)
)
, (3.70)

with the Hadamard parametrix h̃ given by

h̃ϵab′(x, x
′) .=

ũab′(x, x
′)

σϵ(x, x′)
+ ṽab′(x, x

′) log
(
σϵ(x, x

′)
λ2

)
. (3.71)

Once again, the parametrix encodes the divergent behaviour of ω2, while w̃ is a
smooth symmetric bi-tensor, which describes the freedom in the choice of the state.
Using the notion of Hadamard state, we can repeat the construction of section 3.5.4,
enlarging the algebra C(M) by means of the Hadamard regularization prescription.
Indeed, on C(M) the point-splitting prescription reads

: ĉa(x)ĉb′(x
′) : .= ĉa(x)ĉb′(x

′)− i
8π2hab′(x, x

′)Î ,

leading to the following regularized correlation function

⟨: ĉa(x)ĉb(x) :⟩ω =
i

8π2
[wab] ,

which is now smooth on the coinciding point limit.

Again, we consider the following series expansion around the coinciding point
limit

ṽab′(x, x
′) =

∞∑
n=0

ṽ
(n)
ab′ (x, x

′)σn .
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By means of the same procedure of section 3.5.2, we impose the equation of motion
□(h̃ + w̃) = 0, isolating the singularities order by order and thus obtaining the
Hadamard recursion relations for ghost fields

2∇µσ∇µũab′ + (□− 4)ũab′ = 0 ,

□ũab′ +□σṽ(0)ab′ − 2ṽ
(0)
ab′ + 2∇µσ∇µṽ

(0)
ab′ = 0 ,

□ṽ(n)ab′ + 2(n+ 1)∇µσ∇µṽ
(n+1)
ab′ + (n+ 1)(□σ + 2n)ṽ

(n+1)
ab′ = 0 .

Going a little further, we consider of Taylor expansion of ṽ(n), giving

ṽ
(n)
ab′ (x, x

′) = pcc′p
d
d′ [q̃

(n)
ab (x) +∇µq̃

(n)
ab (x)σµ + 1

2∇ν∇µq̃
(n)
abcd(x)σ

µσν + ...] , (3.72)

with p the parallel propagator, as defined by (3.64). Denoting z̃ab(x)
.
= q̃

(1)
ab (x) and

by substitution of (3.72) into the Hadamard recursion relations, it follows that on
vacuum spacetimes [1]

z̃ab = − 11
2880g

abRpqrsRpqrs . (3.73)

This result, together with (3.66) and (3.67), will play an important role in un-
derstanding the trace anomaly of linearized quantum gravity and its role on the
evaporation of black holes.

3.6 Recovering Fock space. The GNS construction and
particle creation

In this chapter we have described the algebraic approach to quantum field theory,
specializing it to case of linearized quantum gravity. Indeed, the powerful techniques
of AQFT have provided a toolkit to achieve quantization on curved spacetimes, via
a canonical covariant fashion. Indeed, it has been possible to describe the entire
theory, from the algebra of observables to the computation of expectation values,
without referring to any particular representation on some Hilbert space.

We conclude this chapter by explaining how the algebraic approach can be suc-
cessfully represented on Hilbert spaces, thus recovering the usual formalism of quan-
tum mechanics. Except for few details, the following construction holds for different
physical models and quantum fields.

We begin this discussion by giving the following definition. We start from A(M),
the unital ∗-algebra of perturbation fields6, on which we consider a positive state ω.
Let H be an Hilbert space, D a dense subspace of H and L(D) the space of linear
operator on D. We call ∗-representation of A(M), any linear, product-and-unit
preserving map

π : A(M) → L(D) ,

such that for any O ∈ F(M)

π(O)†|D = π(O∗) .

6At the moment we are not accounting for the contribution of ghost fields. The reason behind
this choice will become clear at the end of this section
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Moreover, we say that a vector Ψ spans D, if

π(A)Ψ = D .

From the algebraic point of view, the quantum field γ̂ has been defined in an abstract
fashion as a generator of the ∗-algebra of fields. The choice of a ∗−representation π,
allows us to actually map γ̂ into the space of operator valued distributions, recover-
ing the common interpretation of quantum field. This idea can be mathematically
implemented through the Gelfand–Naimark–Segal (GNS) construction [31].

Theorem 2. Let A be a unital ∗-algebra and ω a positive state. By means of the
previous definitions, there exists a quadruple (H,D, π,Ψ), respectively given by an
Hilbert space H, a dense subspace D, a ∗-representation π and a vector Ψ, such that,
given O ∈ A

ω(O) = ⟨Ψ|π(O)|Ψ⟩ .
Moreover, if another quadruple (H′,D′, π′,Ψ′) satisfies,

ω(O) = ⟨Ψ′|π′(O)|Ψ′⟩ .

then there exist an isometry U : H → H′, such that for any O ∈ A

UΨ = Ψ′ ,

UD = D′ ,

Uπ(O)U−1 = π′(O) .

The GNS theorem guarantees that from the abstract, but powerful, algebraic
point of view, it is always possible to recover a representation of A on some Hilbert
space, which preserves the notion of expectation value of observables. A stronger
version of this theorem holds for quantum mechanics, in which the quadruple reduces
to the GNS triple (H, π,Ψ), where Ψ is a cyclic vector, being enough to span the
entire Hilbert space

π(A)Ψ = H
However, this is not the case of quantum field theory, where the infinitely many
degrees of freedom allow only for a map of A into a subspace of D.

As previously mentioned, theorem 2 cannot be trivially applied to F(M), due to
the presence of ghost fields, which leads to states that fails the positivity requirement
of ω. However, the GNS-construction can be extended, by considering an indefinite
scalar product space, i.e Krein space rather than an Hilbert space [31, 26]

If ω is a (pure) quasi-free state, the GNS quadruple builds an irreducible rep-
resentation of A of the one-particle structure on the Fock space, with |Ψ⟩ as the
vacuum state of the theory. In some sense, this justifies the description of quasi-free
states in terms of those functionals on A which allow for a (at least asymptotic)
recovery of the notion of particle [22].

As discussed at the beginning of this chapter, a curved spacetimes admit different
non-equivalent representations of the same algebra, which both satisfies the GNS
construction, while giving

⟨Ψ|π(O)|Ψ⟩ ≠ ⟨Ψ′|π′(O)|Ψ′⟩ .
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M

ω

φ

ω′

ω 6= ω′

{xa}

{x′a}

Figure 3.1: Multiple states from diffeomorphisms invariance

Indeed, let us consider the Fock representation of ĥ = π(γ̂), in terms of creation and
annihilation operators, with vacuum state |Ω⟩, such that

⟨Ω|hab|Ω⟩ = 0 .

However, we may always find another non-equivalent representation of A such that,
if U : H → H̃,

⟨Ω̃|h̃ab|Ω̃⟩ ≠ 0,

with
UhabU

−1 ̸= h̃ab .

Hence, the notion of vacuum is ill-defined, since it depends from the choice of the
representation, related on its turn to the choice of the quantum state ω. This fact
bring non-negligible physical consequences. For instance, due to the curvature of
spacetime, a free falling observers will measure some effects related to the presence
of particles (of any kind), which has been gravitationally produced.

This discussion justifies, a posteriori, how the algebraic approach reveals to be
more adapt when dealing with quantum fields on curved spacetimes. Contrary to
the standard approach, splitting the construction of states and of representations
from the rest of the discussion, has made possible to give a covariant quantiza-
tion procedure, which holds for any choice of the spacetime background. On the
other hand, we have shown that different choices of backgrounds and states leads to
non-negligible consequences in the computation of the expectation values of gauge-
invariant observables. However, by the choice of an Hadamard state

ωabc′d′(x, x
′) = lim

ϵ↓0
1

8π2
(
hϵabc′d′(x, x

′) + wabc′d′(x, x
′)
)
,

it has been possible to account for these ambiguities, in some sense related to the
gravitational distortion of vacuum, in terms of a freedom in the choice of the smooth
symmetric tensor w, and thus of the GNS representation on some Hilbert space.
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Chapter 4

Gravitational evaporation of a
Schwarzschild black hole

4.1 Introduction

In this chapter we discuss the role of quantum gravitational radiation in black evap-
oration, by studying the effect of a metric perturbation in the Raychaudhuri’s equa-
tion. From section 1.5 we recall that, for a radial null outgoing geodesics congruence,
the perturbed Raychaudhuri’s equation reads

dθ

dλ

∣∣∣
H+

= −ε2σ̂(1)ab σ̂
ab
(1) − ε2R

(2)
cd k

ckd +O(ε3) . (4.1)

The computation of these contributions requires two different interpretations on the
role of the perturbation field γab

1. From a geometrical point of view, we can evaluate how γab contributes to the
squared shear tensor σ̂abσ̂

ab, both explicitly through the metric and by means
of a correction to the geodesics tangent vector field.

2. By means of more field-oriented point of view, we can study the second order
Ricci term, by actually relating it to a semiclassical contribution produced by
the stress-energy tensor of γ.

In both cases, the presence of quantum gravitational radiation is hidden in kckdR
(2)
cd

and σ̂
(1)
ab σ̂

ab
(1), which will be considered as observables of our theory and computed

by means of a semiclassical approach, under the choice of a suitable quantum state.
In the previous chapters we have studied quantum gravitational radiation from

the point of view of algebraic quantum field theory on curved spacetime. Indeed,
our discussion has begun from the linearization of the complete metric

g̃ab = gab + εγab +O(ε2) ,

around a fixed classical background spacetime (M, g). The purpose of semiclassical
gravity is to take a step forward towards a theory of quantum gravity.

We begin our discussion by assuming that the spacetime background may ac-
tually change under the effect of finite contribution produced by the backreaction
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of a quantum field like γ̂ [22]. In the following sections we shall investigate the
role of the stress-energy tensor of quantized gravitational radiation, by applying
the Hadamard point-splitting procedure, already introduced in section 3.5.4, and
focusing on its physical consequences.

Let us consider a quantum state ω. The computation of the backreaction of
a quantum matter field can be achieved by means of the semiclassical Einstein
equation [22, 47, 33]

G̃ab = 8π⟨Tab⟩ω , (4.2)

with G = 1 and T the stress-energy tensor of the quantum theory. Actually, using
(4.2) together with (1.5) and recalling that, on the background spacetime the con-
gruence satisfies kak

a = 0, we get the semiclassical Raychaudhuri’s equation, which
for linearized gravity actually reads

dθ

dλ

∣∣∣
H+

= −ε2⟨σ̂(1)ab σ̂
ab
(1)⟩ω − ε28π⟨Tab⟩ωkakb +O(ε3) . (4.3)

Since Tab is quadratic in γ̂ab, in the following section we shall recall its renormaliza-
tion [1], which will lead to a quantum conserved prescription for ⟨Tab⟩ω [22], to be
used in (4.3).

The computation of the explicit expression of the squared shear tensor σ̂
(1)
ab σ̂

ab
(1) is

considered in appendix B. As we shall see in the following section for Tab, we should

continue this analysis by studying the renormalization of ⟨σ̂(1)ab σ̂
ab
(1)⟩ω, thus obtaining

its contribution to the backreaction. However, the expression of the squared shear
tensor found in B is not so easy to treat. For this reason, we prefer to follow
the second approach explained in 2, by interpreting γ̂ab as an external quantum
field which propagates on (M, g), focusing on the contribution to the backreaction
given by its stress-energy tensor. A posteriori, due to some similarities between
the contribution of σ̂abσ̂ab and Tab (e.g the term kikf∇fγ

dk∇iγdk) and under some
physical requirement on the state ω, one should expect approaches 1 and 2 to give
compatible results, such that

⟨: σ̂abσ̂(ren)ab :⟩ω|H+ ∝ ⟨: T (ren)
ab :⟩ωkakb|H+ .

At the end of this chapter we shall also consider the evaporation induced by
a massless scalar field ϕ backreacting on the spacetime background, which can be
computed in a similar way.

4.2 Regularization of the stress-energy tensor

We start by briefly resuming the result of [1, 13, 17], adopting them to the framework
of algebraic quantum field theory on curved spacetime [22, 47, 31, 7].

We begin our discussion from the second order expansion of the Einstein-Hilbert
action, which gives the action of linearized gravity Slg (2.16)

Slg =
1

32πG

∫
[12γ

ab□γab − 1
4γ□γ + (∇aγab − 1

2∇bγ)
2 + γabRacbdγ

cd+

+ γabR
bcγac − γγabRab − 1

2Rγabγ
ab + 1

4Rγ
2]
√−gd4x .
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We follow the approach of [1], which is near to the one of [17, 16], already resumed
in section 3.4. Indeed, the quantization of the theory is performed by means of the
Fadeev-Popov procedure, adding a de Donder gauge-fixing term Sgf [1]

Sgf = − 1

32πG

∫
1

2α
[∇aγab − k∇bγ

a
a ][∇cγ

cb − k∇bγcc ]
√−gd4x ,

compensated by the ghost fields c and c̄, whose action is given by [1]

Sgh = − 1

32πG

∫
c̄a[g

ab□+Rab]cb
√−gd4x .

Here, we have modified the convention of section 3.5, following the one of [1], by
removing the i factor from both the action (the stress-energy tensor) and the two-
point correlation function, which would be anyway cancelled by the −i factor within
the definition of the matrix ω(F ) (3.46).

We define the stress-energy tensor as1

T ab .
= − 2√−g

δS

δgab
, (4.4)

with S
.
= Slg + Sgf + Sgh. According to the previous definition (4.4), the different

terms of the gauge-invariant action leads to three different contribution to T ab. For
a vacuum spacetime the gravitational contribution gives [1]

Tµν
lg =

1

32πG

[
+∇µγab∇νγab − 4γb(ν∇µ)∇aγab + 4γb(ν∇µ)∇bγ − 4∇b∇(νγµ)aγab+

− 4∇(νγµ)a∇bγab − 2∇b∇aγ
a(µγν)b − 2∇a∇bγ

a(µγν)b+

− 2∇bγ
a(µ∇aγ

ν)b + 2∇bγ∇(νγµ)b + 2∇b∇aγ
abγµν + 2∇b∇aγ

µνγab+

+ 2∇aγ
µν∇bγ

ab + 2∇bγ
µ
a∇bγνa −∇aγ∇aγµν + 2γab∇(ν∇µ)γab+

− γ∇ν∇µγ + 2γ∇b∇(νγµ)b + 2γabγc(µR
ν)
abc − γ□γµν+

− gµν(+2γab□γab − γ□γ + 3
2∇cγab∇cγab −∇aγ

ab∇cγbc+

− 3∇c∇aγ b
a γbc + γabRacbdγ

cd − γab∇c∇aγ
c
b − 1

2∇aγ∇aγ+

+ 2∇aγ∇bγab +∇a∇bγγab + γ∇a∇bγ
ab −∇cγab∇aγbc )

]
,

while the de Donder gauge-fixing contribution is

Tµν
gf =

1

32πG

[
+ 4γb(µ∇ν)∇aγab − 2γb(µ∇ν)∇bγ + 2∇aγ

µν∇bγ
ab+

−∇aγ∇aγµν − 2∇aγ
µa∇bγ

νb + 2∇bγ
b(µ∇ν)γ − 1

2∇µγ∇νγ+

− gµν(+∇aγ
ab∇cγbc + 2∇c∇aγ b

a γbc − 1
4∇aγ∇aγ −∇a∇bγγab )

]
.

On the other hand, the ghost term reads

Tµν
gh = − 1

32πG

[
+ 2∇bc̄

b∇(µcν) + 2∇(µc̄ν)∇bc
b + 2c̄a∇a∇(µcν)+

+ 2ca∇a∇(µc̄ν) + 2∇(µc̄a∇ν)ca − 2∇ac̄(µ∇ac
ν)+

− gµν(+2∇ac̄b∇(acb) +∇(a∇b)c̄
acb + c̄b∇(a∇b)c

a+

−∇ac̄
a∇bc

b)
]
.

1Here, we are using the opposite notation with respect to [1], in order to avoid a minus sign in
the Einstein equation.
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From now on we denote

T ab
dD

.
= T ab

lg + T ab
gf ,

T ab .
= T ab

lg + T ab
gf + T ab

gh , (4.5)

respectively the gauge-fixed and the total stress-energy tensor. As we have pointed
out several times, Tab, currently defined by the functional derivative of S, is quadratic
in the perturbation field γab and its derivatives, hence a direct computation of its
expectation would be divergent on the coinciding point limit. To prevent this, we
shall consider the normal ordering prescription, already discussed in section 3.5.4,
applying it to Tab. As we shall see in the next section, this procedure will lead to a
conservation anomaly in ⟨: Tab :⟩, which will need to be removed via a renormaliza-
tion, thus being finally able to write the semiclassical Einstein equation.

Let us associate a bi-tensor to any contribution of Tab, by simply assuming that
all the products of fields are taken at two different points of the spacetime x and x′,
such that

T ab′(x, x′) .= T ab′
lg (x, x′) + T ab′

gf (x, x′) + T ab′
gh (x, x′) .

To reduce our notation, we can write T ab in terms of the action of a bi-differential
operator, distinguishing between the gauge-fixed and ghost contributions as

T ab′
dD

.
= Dab′cde′f ′

dD (γcd, γe′f ′) , (4.6)

T ab′
gh

.
= Dab′cd′

gh (cc, cd
′
) . (4.7)

Finally, if we consider a state ω, the distributional character of both γab and c
a leads

to

[⟨Tab⟩ω](x) .= lim
x′→x

⟨Tab′(x, x′)⟩ω → ∞ .

As already done in section 3.5.4, we solve this critical issue by employing the normal
ordering procedure.

Let us consider an Hadamard quasi free state ω, which acts on both the ghost
and perturbation quantum fields by means of (3.50) and (3.70), which we recall
being

ωabc′d′(x, x
′) = lim

ϵ↓0
1

8π2
(
hϵabc′d′(x, x

′) + wabc′d′(x, x
′)
)
, (4.8)

ωab′(x, x
′) = lim

ϵ↓0
1

8π2

(
h̃ϵab′(x, x

′) + w̃ab′(x, x
′)
)
, (4.9)

where hϵabc′d′ and h̃
ϵ
ab′ are respectively the Hadamard parametrices associated to γab

and ca, given by (3.51) and (3.71).
We can apply the point splitting procedure of section 3.5.4 to (4.6) and (4.7). In-

deed, by subtraction of the divergent terms encoded by the Hadamard parametrices
of (4.8) and (4.9), we get the following results

⟨: T ab
dD :⟩ω =

1

8π2
[Dab′cde′f ′

dD wcde′f ′ ](x) ,

⟨: T ab
gh :⟩ω =

1

8π2
[Dab′cd′

gh w̄cd′ ](x) ,
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which stand as a generalization of the normal ordering prescription to curved space-
times. Since both wcde′f ′ and wcd′ are smooth on the coinciding point limit, the
expectation value of the regularized (i.e normal ordered) stress-energy tensor is fi-
nite, finally giving

⟨: T ab :⟩ω =
1

8π2

(
[Dab′cde′f ′

dD wcde′f ′ ] + [Dab′cd′
gh w̄cd′ ]

)
. (4.10)

As previously discussed in section 3.5.4, this prescription is not unique, due to the
freedom encoded in the choice of length parameter within the parametrices hϵabc′d′
and h̃ϵab′ , together with the possibility to always redefine (4.10) by the subtraction
of a tensor contribution regular on the coinciding point limit.

4.3 Renormalization of the stress-energy tensor

In the previous section we have obtained an expectation value of the stress-energy
tensor which is well-behaved (4.10). Indeed, by the choice of an Hadamard state ω,
we can actually compute ⟨: T ab :⟩ω. Anyway, as we shall discuss, we are not ready
to write down the semiclassical Einstein equation (4.2).

The previously discussed Hadamard regularization procedure brings another crit-
ical issue: the regularized stress-energy tensor constructed by a simple subtraction
of the divergent terms (4.10) is not covariantly conserved, being ∇a⟨: Tab :⟩ ≠ 0.
The reason of this conservation anomaly stands behind the observation that the
parametrix h and w does not separately satisfy the equations of motion [22]. Ex-
plicitly, it can be shown that [1]

∇a⟨: Tab :⟩ω = ∇aτdDab +∇aτ ghab ̸= 0 , (4.11)

with τdDab and τ ghab defined as

τdDab
.
=

1

8π2

(
2(zcdcd − 1

2z
c d
c d)gab − 12(zcacb − 1

2z
c
cab)

)
,

τ ghab
.
=

1

8π2
(12z̃ab − 4z̃ c

c gab) .

Here z and z̄ are the first order contributions to the Taylor series of both v(1) and
ṽ(1), as discussed in sections 3.5.3 and 3.5.5. Obviously, a non-conserved tensor is
not eligible to be equated with the Einstein tensor G̃ab, which on its own satisfies
the Bianchi identity

∇aG̃ab = 0 .

Hence, our current prescription of ⟨: Tab :⟩ cannot be used to write the semiclassical
Einstein equation (4.2). However, the exact knowledge of the anomalous behaviour
of (4.11) allows us to attempt a redefinition of the expectation value of the stress-
energy tensor by the subtraction of the non-vanishing contribution of (4.11). Indeed,
this modification can be viewed from two different points of view. On one hand,
it can be seen as a redefinition of the classical stress-energy tensor by means of a
terms which does not alter the canonical on-shell components, while ensuring the
covariant conservation after the quantization. On the other hand, the subtraction
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of the anomaly can be viewed in terms of an operation which preserves the classical
stress-energy tensor, while modifying the normal ordering prescription [22].

We now show how to obtain a covariantly conserved quantum stress-energy ten-
sor for linearized gravity. Firstly, we denote the anomalous term as a sum of two
contributions

τanab
.
= τdDab + τ ghab ,

respectively related to the conservation anomalies of ⟨: T dD
ab :⟩ω and ⟨: T gh

ab :⟩ω, as
we are going to discuss. From the results [1], given by (3.66), (3.67) and (3.73), on
a vacuum spacetime background (i.e assuming Rab = 0 and R = 0) it follows that

τdDab = − 1

8π2
19

72
RcdefRcdefgab ,

τ ghab = +
1

8π2
11

720
RcdefRcdefgab .

By adding these two contributions, the anomalous term becomes

τanab = − 1

8π2
179

720
RcdefRcdefgab . (4.12)

Hence, we define the renormalized stress-energy tensor by subtracting the conserva-
tion anomaly (4.12) from (4.11)

: T
(ren)
ab :

.
= : Tab : − τanab Î ,

thus leading to the expectation value

⟨: T (ren)
ab :⟩ω = ⟨: Tab :⟩ω − τanab , (4.13)

which is now covariantly conserved

∇a⟨: T (ren)
ab :⟩ω = 0 . (4.14)

Since this procedure preserves the regularity of (4.10) while simultaneously ensuring
the conservation rule (4.14), we can finally write down the semiclassical Einstein
equation as

G̃ab = 8π⟨: T (ren)
ab :⟩ω , (4.15)

with G = 1.
In this section we have sketched the Hadamard renormalization procedure, which

leads to a finite and covariantly-conserved expectation value of the stress-energy
tensor of quantized gravitational radiation. The semiclassical Einstein equation
(4.15) allows us to compute the backreaction of quantum fields on the background
spacetime, provided the choice of a suitable Hadamard quantum state. However,
this renormalization scheme, which restores the covariant conservation rule (4.14),
still produces a non-negligible outcome. Indeed, to remove τanab we have redefined the
expectation value (4.10), compensating the conservation anomaly via the subtraction
of the non-vanishing term in (4.13). This procedure, while being necessary, definitely
modifies the trace of the renormalized expectation value of the stress-energy tensor

⟨: T (ren) :⟩ω .
= gab⟨: T (ren)

ab :⟩ω .
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This leads to the so-called trace anomaly. Indeed, by tracing both (4.5) and (4.12)
we obtain two different contributions, here resumed as

⟨: T (ren) :⟩ω = ⟨: T :⟩ω − τan . (4.16)

On one hand, we have a classical trace term, which on a vacuum spacetime (i.e
Rab = 0 and R = 0) reads

TdD =
1

32π
(−3∇cγab∇cγab + 2∇bγ

ac∇aγ
cb − 4γabγcdRacdb) , (4.17)

plus the classical contribution coming from ghost fields. On the other hand, we get
the trace anomaly term, which in the special case provided by the Schwarzschild (or
Kruskal) background gives

τan = −179

30

1

π2
M2

r6
. (4.18)

Here, we would like to note that the minus sign contained in τan actually compen-
sates the one of (4.16), leading to a positive contribution to the expectation value
of the stress-energy tensor.

4.4 Trace anomaly and black hole evaporation

In this section we shall argue that, in the case of a Schwarzschild spacetime describing
an (initially static) spherically symmetric black hole, the trace anomaly (4.16) can
be used to compute the semiclassical contribution to the Raychaudhuri’s equation
(4.3), under the choice of a suitable vacuum-like state, such that [wabcd](x) ≃ 0 and
which allows us to neglect the classical trace contribution given by (4.17).

To clarity extent, we adopt the following shortened notation for the expectation
value of the stress-energy tensor

Tab .
= ⟨: T (ren)

ab :⟩ω

We consider our initial choice of a radial null outgoing geodesic congruence

k = f(U, V )∂V . (4.19)

To simplify our future computations, we are going to work with null coordinates
(u, v). To apply the result of section (1.4.2), we need to perform a coordinate trans-
formation on (4.19). We recall that, under the map {xµ → xµ

′}, the components of
a vector field k transform as [48, 9]

kµ
′
=
∂xµ

′

∂xµ
kµ .

Hence, by applying this to (4.19) and by substitution of (1.16), we get that the only
non vanishing component of (4.19) is given by

kv = 4Mfe−v/4M =
4Mf

V
.
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Under this prescription, the semiclassical contribution to (4.3) actually reads

dθ

dλ
= −8πε2Tvvkvkv +O(ε3) . (4.20)

By restricting (4.20) to the future horizon H+, we get

dθ

dλ

∣∣∣
H+

= −ε2 2πα
2e2

M2

Tvv
V 2

+O(ε3) (4.21)

with f |H+ = −1
8αeM

−2 given by (1.43). It becomes clear that, for this choice of
the congruence, the computation of Tvv is actually enough to obtain a measure the
derivative of the flux of energy which crosses the event horizon. We shall now discuss
the consequences of this observation.

The sign of Tvv helps us to establish whether the black hole evaporates or not.
Indeed, for a congruence of radial null outgoing geodesics, the initial conditions

θ(λi)|H+ = 0 ,

dθ

dλ
(λi)

∣∣∣
H+

= 0 ,
(4.22)

are provided by the observations of section 1.5 on (1.45) and (1.46), assuming the
stability of the horizon in the past in absence of quantum gravitational radiation.
Hence, the sign of the right-hand side of (4.21) leads to the following statements.

dθ

dλ

∣∣∣
H+

> 0 =⇒ increasing outgoing flux of energy from II to I .

dθ

dλ

∣∣∣
H+

= 0 =⇒ no flux of energy .

dθ

dλ

∣∣∣
H+

< 0 =⇒ increasing ingoing flux of energy from II to I .

(4.23)

Finally, all that it remains is to complete the computations of the right-hand side
of the perturbed Raychaudhuri’s equation.

To get (4.21), we present the following discussion from a more general point of
view, specializing then to the case of the Kruskal background. Let (M, g) be a
spherically symmetric spacetime, whose metric in null coordinates reads

ds2 = −2A(u, v)dudv +R(u, v)2(dθ2 + sin2 θdφ2) . (4.24)

We choose a suitable quantum state ω, which measures only the stationary spheri-
cally symmetric contribution of the backreaction. This implies that

Tuu, Tvv, Tuv, Tθθ, Tφφ ,

are the only non-vanishing components of the expectation value of the renormalized
stress-energy tensor, together with the requirement [11]

T θ
θ = T φ

φ , (4.25)

∂tTab = 0 . (4.26)
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Moreover, we ask that the rotational symmetry of the background spacetime is
preserved on the complete one, by fixing the corresponding component of T

T θ
θ =

1

8π
Gθ

θ , (4.27)

with Gab the background Einstein tensor. Indeed, through the choice of ω, we are
searching for quantum gravitational radiation that is isotropically emitted from the
horizon. By applying (4.24) to (4.27), it follows that

T θ
θ =

1

8π

(
− 1

A
∂u∂v logA− 2

AR
∂u∂vR

)
. (4.28)

until (4.25) holds, T θ
θ and Tuv are the only components that actually contributes

to the trace (4.16)

T .
= gabTab = −2

Tuv
A

+ 2T θ
θ . (4.29)

The last constraint is provided by the conservation of the stress-energy tensor (4.14),
which for (4.24) reads

∇aTav = − 1

AR2
∂u(TvvR2)− 1

R2
∂v

(Tuv
A
R2

)
− 2T θ

θ

∂vR

R
= 0 . (4.30)

Finally, by substitution of (4.29) and (4.28) into (4.30), we obtain a differential
equation which allows us to express Tuv in terms of the trace T and of the components
of the background metric (4.24).

We specialize this discussion to the case of a Kruskal spacetime, written in null
coordinates (u, v) (1.18), such that [43]

ds2 = −
(
1− 2M

r

)
dudv + r2(dθ2 + sin2 θdφ2) ,

which, for G = 1 and Rs = 2M , gives

A =
1

2

(
1− 2M

r

)
, R = r

By substitution in (4.28), we get T θ
θ = 0, which, together with (4.30) and (4.29),

leads to

∂u(Tvvr2) =
1

4

(
1− 2M

r

)
∂v

(
T r2

)
.

By recalling definition (1.14), which gives u = t − r∗ and v = t + r∗, together with
the stationary requirement (4.26), we get

∂r(Tvvr2) = −1

4

(
1− 2M

r

)
∂r

(
T r2

)
. (4.31)

Here, we have actually exploited property (1.13) of the tortoise coordinate, to easily
express the derivative of r∗ with respect to r. By recalling the results of the previous
section, the trace of the renormalized expectation value of the stress-energy tensor
is given by

T = ⟨: T :⟩ω − τan ,
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with τan the trace anomaly contribution. We assume that our initial choice of the
quantum state ω makes the classical contribution (4.17) negligible, with respect to
the anomalous one, giving T = −τan +O(ε). Thus, (4.18) reads

T =
179

30π2
M2

r6
+O(ε) .

By substitution into (4.31), while taking the derivative with respect to r, we get

∂r(Tvvr2) =
179

30

M2

π2

(
1

r5
− 2M

r6

)
= 0 .

Finally, integrating this equation and assuming that, at large distance, the flux of
energy related to Tvvr2 vanishes, we obtain that

Tvv =
179

30π2
M2

r6

(
−1

4
+

1

5

2M

r

)
. (4.32)

By substitution into the perturbed Raychaudhuri’s equation (4.20), we finally get
that

dθ

dλ
= −716

15

ε2

π

M2

r6

(
−1

4
+

1

5

2M

r

)
kvkv +O(ε3) .

To conclude our discussion, we evaluate this expression on the future horizon H+

by taking the limit r → 2M . Given (4.21), we obtain2

dθ

dλ

∣∣∣gr
H+

=
179

19200

α2ε2e2

π

1

M6

1

V 2
+O(ε3) , (4.33)

which is always positive. By recalling (4.23) we can conclude that the quantum filed
γ̂ab backreacts on the Kruskal spacetime, inducing the gravitational evaporation of
the black hole.

In this section we have argued, see e.g (4.23), that a positive right-hand side of
the Raychaudhuri’s equation is a sign that the backreaction of the quantum field γ̂ab
induces the evaporation of the black-hole, by means of an increasing flux of quantum
gravitational energy across the event horizon. Indeed, under some physical but rea-
sonable requirement (such as spherical-symmetry, stationarity and the semiclassical
Einstein field equations), it has been actually possible to relate the evaporation of a
black hole to the presence of a trace anomaly of the renormalized expectation value
of the stress-energy tensor of quantized gravitational radiation.

Before ending this section, we would like to discuss result (4.33) as if it was

obtained by direct computation of ⟨: σ̂abσ̂(ren)ab :⟩ω, according to our first geometri-
cal approach 1. Indeed, the positivity of (4.33) suggests that the quantum effects
produced by γ̂ab modify the geometry of the background spacetime, deforming the
shape of the congruence of geodesics. As a consequence, they become allowed to
cross the event horizon, producing an escape of gravitational energy from the black
hole, which is responsible for its actual evaporation. We briefly sketch this situation
in figure (4.2).

2In view of further results, we are using gr to specify that this contribution to the evaporation
is purely gravitational.
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From a geometrical point of view, we can recall the relation between θ and the
derivative of the cross-sectional area of the congruence A (1.37), which reads

θ =
d

dλ
logA . (4.34)

Hence, the positive right-hand side of (4.33) actually has the role of source of mono-
tonic growth for the cross-sectional area of the geodesics, which can break the “trap”
provided by the future event horizon H+ then escaping from the black hole. Indeed,
by choosing V as an affine parameter for the congruence, and by taking the derivative
of both members of (4.34), we can substitute (4.33), thus getting

d2

dV 2
logA =

d

dV

(
1

A

dA

dV

)
=

k

M6

1

V 2
, (4.35)

with k
.
= 179

19200
α2e2

π . To ensure (4.22), we can choose the following initial conditions3

A(Vi) = AH for V ≤ Vi ,

dA

dV
(Vi) = 0 for V < Vi , (4.36)

with the area of the event horizon given, at the initial time, by AH = 16πM2. By
integrating (4.35) once, we obtain that

1

A

dA

dV
= − c

V Vi
(Vi − V ) ,

where we have imposed (4.36) and defined c
.
= k

M6 . A further integration, together
with the inversion of the log function, leads to the following result

A(V ) =

16πM2V
c
i

V c
e

c
Vi

(V−Vi) for V ≥ Vi ,

16πM2 for V ≤ Vi .
(4.37)

To better understand the behaviour of A(V ), we refer to plot 4.1, which has been
realized for different values of c and choosing Vi = 1. Since c is inversely proportional
to the mass of the black hole, we can explicitly argue that: the more massive is the
black hole, the slower is the growth of the cross sectional area of the congruence and
thus the evaporation of the black hole.

3The initial data should be imposed only for V = Vi. However, we can actually extend them to
the interval V ≤ Vi, by requiring that the black hole is perturbation-free in the past.
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Figure 4.1: Plot of A(V ), with initial data at Vi = 1 and for c = 1, c = 1/2 and
c = 1/4. Realized with Mathematica [29].

However, the answer provided by (4.37) is far from the complete solution, since
(4.37) only holds on a right neighbourhood of Vi, where we can neglect the loss of
mass of the black hole by the emission of gravitational radiation. In order to achieve
a more realistic model, one could try to extend this procedure, accounting for the
evaporation with the choice of a different spacetime background. Indeed, by allowing
the dependence of the mass from at least one coordinate M →M(V )4, it would be
possible to relate the evolution of the cross-sectional area of the congruence with
that of the area of the event horizon H. Therefore, it would be possible to obtain,
and hopefully integrate, a local equation for the evolution of the mass M , which
unfortunately goes beyond the purpose of this thesis.

4Actually, this case is provided by the Vaidya metric [43].
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Figure 4.2: Evaporation in terms of a geodesics congruence
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4.4.1 From quantum effects on the horizon to Hawking radiation

In this section we consider the previously obtained results, proving that they can be
related to the usual interpretation of black hole evaporation in terms of the emission
of radiation at a large distance from the horizon, namely gravitational Hawking
radiation.

We begin our discussion with an observation. Let us consider the Kruskal metric
in tortoise coordinates (t, r∗) (1.12), which reads

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)
dr2∗ + r2dθ2 + r2 sin2 θdφ2 , (4.38)

with r defined implicitly by

r∗
.
= r + 2M log(r/2M − 1) ,

and giving the event horizon H by the limit r∗ → −∞ for r → 2M . As in the
previous section, we require that the quantum state ω measures only the stationary
spherically symmetric contribution of the gravitational backreaction, leading to the
following ones as the only non-vanishing components of the expectation value of the
stress-energy tensor

Ttt, Tr∗r∗ , Ttr∗ , Tθθ, Tφφ .
Moreover, since stationarity and spherical symmetry is preserved, we expect the
tensor field T to depend only from r∗ (through r). By the computation of the
Christoffel symbols of (4.38), and from the covariant conservation condition (4.14)
we get that

∇aTat =
r ((r − 2M)∂r∗Ttr∗ + 2Ttr∗)

(r − 2M)2
= 0 .

By inverting the Leibniz rule, we come to the following condition

∂r∗
(
r2Ttr∗

)
= 0 ,

which states that r2Ttr∗ is constant through the spacetime. Hence, we can mea-
sure the flux of quantum gravitational radiation at large distance, i.e the Hawking
radiation, by computing Ttr∗ directly along the event horizon H

r2Ttr∗ |H = lim
r∗→∞

r2Ttr∗ . (4.39)

Before entering the computation of the left-hand side of (4.39), we define the lumi-
nosity of the Hawking radiation of the black hole as [8, 11]

L .
= −4π lim

r∗→∞
r2Ttr∗ . (4.40)

Indeed, this definition guarantees that the presence of outgoing radiation from the
horizon, which occurs for Ttr∗ |H < 0 (as we shall see in terms of the results of
previous section), leads to a positive luminosity.

Let us consider a coordinate transformation {xµ → xµ
′}, the components of the

(0, 2) tensor field T give [48, 9]

Tµ′ν′ =
∂xµ

∂xµ′
∂xν

∂xν′
Tµν .
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Hence, by recalling that u = t− r∗ and v = t+ r∗, we get

Ttr∗ = Tvv − Tuu .

From definition (1.16), we have that the Kruskal coordinate U = −e−u/2Rs , which
leads to the following transformation rule

Tuu =
U2

16M2
TUU . (4.41)

Since the state ω is regular on the horizon H (located at UV=0), TUU |H+ < +∞.
The restriction to the hypersurface H+ can be obtained by evaluating U = 0, which,
by substitution in (4.41), ensures that

Tuu|H+ = 0 =⇒ Ttr∗ |H+ = Tvv|H+ .

By substitution in definition (4.40), we get the luminosity of gravitational Hawking
radiation is given by

Lgr = −16πM2Tvv|H+ . (4.42)

In the previous section we have obtained a precise expression for Tvv, given in terms
of the trace anomaly of quantum gravitational radiation. Exploiting our previous
result (4.32) while taking the limit r → 2M , we finally obtain that the luminosity
of gravitational Hawking radiation is given by

Lgr =
179

2400

1

π

1

M2
. (4.43)

We should note here that this expression of the luminosity is the same obtained by
Bekenstein-Hawking (see for instance [39, 40, 41]), except for the numerical factor
which depends from the choice of the model describing the evaporation.

Finally, we observe that (4.1) agrees with the prediction of plot (4.1), for which
the lighter is the black hole, the greater is its power of emission of Hawking radiation,
which translates in a faster loss of mass.

4.4.2 Black hole evaporation from a scalar field

Before ending this chapter we consider the argument of the previous sections, by
applying it to the case of the scalar field theory on a curved spacetime background
(M, g), whose action is given by

S =

∫ (
−1

2g
µν∇µϕ∇νϕ− 1

2m
2ϕ2 − 1

2ξRϕ
2
)√−gd4x , (4.44)

which leads to the following equations of motion

Pϕ
.
=

(
□−m2 − ξR

)
ϕ = 0 .

We will present this discussion in general terms. However, since we are interested in
working with a congruence of null geodesics, we will later restrict our computation
to the massless case. Indeed, all the details regarding the scalar theory, from both
the classical and quantum structures to the regularization of Wick monomials has
been reviewed in appendix A.
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By taking the first variational derivative of (4.44) with respect to the background
metric (4.4), we obtain the stress-energy tensor of the scalar theory [22]

TKG
ab = (1− 2ξ)∇aϕ∇bϕ− 2ξ(∇a∇bϕ)ϕ+ ξGabϕ

2+

+ gab
{
2ξ(□ϕ)ϕ+

(
2ξ − 1

2

)
∇ρϕ∇ρϕ− 1

2m
2ϕ2

}
, (4.45)

with G the background Einstein tensor. Moreover, the classical trace of (4.45) is
given by [22]

T
.
= gabTKG

ab = (6ξ − 1)(ϕ□ϕ+∇aϕ∇aϕ)−m2ϕ2 − ϕPϕ ,

which vanishes for a massless (m = 0), on-shell (Pϕ = 0), conformally coupled
(ξ = 1

6) scalar field.
From now on, we follow exactly the same discussion of sections 4.2, 4.3 and

4.4. In order to write the semiclassical Einstein equation, and thus computing the
backreaction of the field on the background spacetime, we consider an Hadamard
quantum state ω, given by (A.22). Hence, the expectation value of the stress-energy
tensor is given by ⟨TKG

ab ⟩ω. However, expression (4.45) is quadratic in ϕ, hence, its
expectation value will be singular in the coinciding point limit. By following the
argument adopted for the regularization of the Wick monomials, whose expression
for a scalar field is given by (A.29), we regularize ⟨TKG

ab ⟩ω by subtraction of the
divergent contribution driven by the Hadamard parametrix (A.23). Indeed, the
regularized stress-energy tensor is given by [22]

⟨: TKG
ab :⟩ω =

1

8π2
[DKG

ab w] ,

such that

DKG
ab w(x, x′) = (1− 2ξ)gb

′
b∇a∇b′ − 2ξ∇a∇b + ξGab+

+ gab

{
2ξ□x +

(
2ξ − 1

2

)
gc

′
c∇c∇c′ − 1

2m
2
}
.

As previously argued w and h does not separately satisfy the equation of motion.
Hence, our current regularized prescription is not covariantly conserved, being

∇a⟨: TKG
ab :⟩ω = ∇aCab ̸= 0 .

To be able to write the semiclassical Einstein equation (4.2), we modify our initial
definition (4.45), by subtracting the conservation anomaly, encoded by a tensor C,
such that

: T
KG(ren)
ab :

.
= : TKG

ab : − CabÎ ,

which now gives ∇a⟨: TKG(ren)
ab :⟩ω = 0. As happened for Wick monomials (A.30),

the renormalized stress-energy tensor shows multiple degrees of freedom, being al-
ways possible to consider the following redefinition [22, 36]

: T
KG(ren)
ab (x)′ : = : T

KG(ren)
ab (x) : +β1m

4gab + β2m
2Gab + β3Iab + β4Jab ,

with β1, β2 and β3 as renormalization constant and where the tensors I and J are
respectively obtained as functional derivative of

√
gR2 and

√
gRabRab.
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After this discussion, it is now possible to write down the semiclassical Einstein

equation G̃ab = 8π⟨: TKG(ren)
ab :⟩ω. However, the previous modification to the original

prescription of Tab (4.45) introduces an anomalous contribution to the trace of the

renormalized expectation value ⟨: TKG(ren) :⟩ω .
= gab⟨: TKG(ren)

ab :⟩ω, which now
reads [36]

⟨: TKG(ren) :⟩ω =
1

4π2
[v1] +

1

8π2
(
3(ξ − 1

6)□−m2
)
[w] + 4c1m

4 − c2m
2R− c3□R ,

with c1, c2 and c3 as renormalization constant, and v1 the Hadamard coefficient
given by (A.27). On a vacuum spacetime background (1.6), for a massless and
conformally coupled scalar field, this trace anomaly can be computed as

⟨: TKG(ren) :⟩ω =
1

60π2
M2

r6
,

where we have substitute the expression of [v1] (A.28). Contrary to linearized gravity,
the case of a massless conformally coupled scalar field does not provide any classical
trace contribution, thus it is not necessary to require [w] ≃ 0.

At this point, we can repeat exactly the same procedure of section 4.4. We choose
a state ω which preserves the spherical symmetry and stationarity of measurements,
then we integrate the covariant conservation relation of the stress-energy tensor,
thus relating the trace anomaly with the component

⟨: TKG(ren)
vv :⟩ω =

1

60π2
M2

r6

(
−1

4
+

1

5

2M

r

)
. (4.46)

Having imposed the semiclassical Einstein equation (4.2), we substitute this result
in the semiclassical Raychaudhuri’s equation, finally obtaining that

dθ

dλ

∣∣∣KG

H+
=

1

38400

α2ε2e2

π

1

M6

1

V 2
+O(ε3) .

At last, we can derive the contribution of the scalar theory to the luminosity of the
black hole. By substitution of (4.46) in definition (4.42), we get that

LKG =
1

4800π

1

M2
. (4.47)
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In this thesis we have considered a model of the evaporation of a (initially static)
spherically symmetric black hole. We have started from the theory of linearized
gravity to describe the behaviour of quantum gravitational radiation propagating
over a Schwarzschild spacetime. Therefore, we have investigated the backreaction
of such a quantum field on the background spacetime, which is controlled by the
expectation value of the stress-energy tensor, as a consequence of the semiclassical
Einstein equation. Indeed, ⟨: Tab :⟩ω plays a pivotal role in the Raychaudhuri’s
equation, where it drives the expansion parameter of a congruence of outgoing null
radial geodesics, used to investigate the actual presence of evaporation.

Under some physical assumption on the quantum state ω, we have argued that,
on a Schwarzschild spacetime background, the trace anomaly of the stress-energy
tensor brings a positive and non-negligible contribution to the right-hand side of the
Raychaudhuri’s equation, thus leading to a monotonic growth of the flux of outgoing
gravitational energy produced by the black hole (4.1). We can interpret this result
as follows: the backreaction of the quantum field prevents the event horizon from
being able to trap the geodesics within its surface, leading to a violation of the initial
stability of the system and thus of a loss of mass of the black hole itself.

Then, we have started from the previous result, considering the conservation of
a specific component of ⟨: Tab :⟩ω. Doing so, we have been able to relate the flux of
energy across the horizon with the actual presence of gravitational radiation at large
distance from the black hole, namely Hawking radiation, of which we have computed
the luminosity (defined as the power of emission of the black hole). In particular,
both (4.43) and (4.47) reproduce the expression of the Bekenstein-Hawking lumi-
nosity, which depends from the inverse of the square of the mass of the black hole.
In view of this, we expect that a suitable forge to test the emission of Hawking
radiation is given by primordial black holes, which, if they existed, would be very
lightweight, thus leading to a power of emission much more relevant than the one
expected from a black hole formed by a stellar collapse.

Finally, we point out that such an evaporation model based on the use of the trace
anomaly reveals to be very powerful, since it can be applied to different quantum
field theories to describe other types of Hawking radiation on potentially different
choices of the spacetime background. Indeed, given ω a suitable quantum state, and
Tab the renormalized stress-energy tensor of the chosen theory, its trace-anomaly
contribution reads [10, 6]

⟨T ρ
ρ ⟩ = (2880π2)−1

(
α1CabcdC

abcd + α2(RabR
ab − 1

3R
2) + α3□R+ α4R

2
)
,

where Cabcd is the Weyl tensor, already introduced in (1.34), while αi are constant
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which depends from the considered theory and in particular from the coefficients
(A,B) of the associated representation of the Lorentz group, resumed in table 4.3.

(A,B) α1 α2 α3 α4

(0, 0) −1 −1 (6− 30ξ) −90(ξ − 1
6)

2

(12 , 0) −7
4 −11

2 3 0

(12 ,
1
2) 11 −64 −6 −5

(1, 0) −33 27 12 −5
2

(1, 12)
291
4 × × 61

8

(1, 1) −189 × × −747
4

Figure 4.3: Coefficients involved in the computation of the trace anomaly of the
stress-energy tensor, with (A,B) labeling the representation of the Lorentz group

From the contents and the results of this work there are different possible insights
that can be used to investigate further mathematical and physical details.

Concerning black hole evaporation, it would be interesting to complete the ge-
ometrical analysis started in appendix B, performing the renormalization of the
squared shear tensor, in order to understand how geodesics paths are modified by
the backreaction of the quantum perturbation field. Contrary to the trace anomaly
approach, the geometrical point of view does not make use of ghost fields, therefore,
one may be interested in a comparison between these results, aimed to understand
the role of ghosts in the evaporation process.

In the Klein-Gordon theory it has been already shown that, on a Schwarzschild
background, states like the Unruh one [8] can be proved to be of Hadamard [12].
Actually, their choice justifies the computation of the trace anomaly contribution
of section 4.4.2. However, this is not the case of the theory of linearized gravity,
for which the existence of an Hadamard state satisfying certain properties (such as
the stationary requirement) has only been assumed a priori and aimed to mimic the
behaviour of the Unruh state of the scalar theory. In order to study the construction
of an Hadamard state for linearized gravity, one need first to study its two-point
function, whose antisymmetric part is fixed by the causal propagator G, associated
to the Lichnerowicz equation of motion (2.25). Even if we expect it, a proof of
the existence of such a kind of state would confirm our initial ansatz, establishing
that it is possible to actually measure the gravitational evaporation (in a quantum
mechanical sense).

Finally, it would be very interesting to work with a more general class of space-
times, removing the static and stationary requirements from the choice of the back-
ground. Indeed, by considering a dynamical evolution in the choice of the metric,
we could use the Raychaudhuri’s equation to relate the growth of the cross-sectional
area of the geodesics congruence to the actual area of the horizon of the black hole.
In this way, the semiclassical contribution (when driven by the trace anomaly term)
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would lead to a model predicting the behaviour of the mass of the evaporating black
hole, with respect to some time-like coordinate on the spacetime.
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Appendix A

Review of the free scalar theory

In this chapter we review the classical theory of a scalar field on a curved spacetime,
adopting the framework of algebraic quantum field theory.

A.1 Classical theory

We consider the action of a free real scalar field of mass m on a curved spacetime
background (M, g), which is given by [22]

S =

∫ (
−1

2g
µν∇µϕ∇νϕ− 1

2m
2ϕ2 − 1

2ξRϕ
2
)√−gd4x , (A.1)

By taking the variational derivative of (A.1), we get the Einstein-Klein-Gordon
equation

Pϕ
.
=

(
□−m2 − ξR

)
ϕ = 0 , (A.2)

which describes the dynamics of the field ϕ. Even with a minimally coupled theory,
i.e ξ = 0, (A.2) is not background independent, since all the information concerning
the geometry of the spacetime is carried by the Laplace-Beltrami operator □ :=
gµν∇µ∇ν .

To study the Cauchy problem associated with (A.2), we briefly review the pro-
cedure already discussed in section 2.3.2. However, for a classical scalar field theory,
less mathematical details is required, since ϕ is actually a smooth function which
takes values on the spacetime

ϕ : M → R .

Nevertheless, to connect this prescription to the geometrical language adopted in
section A.2, we can define the space of configuration fields ϕ as the space of smooth
sections [4]

Γ(K) = C∞(M) ,

where C∞(M) is the space of smooth (i.e infinitely differentiable) function on the
manifold M, while K is a vector bundle with base space M and typical fiber R (see
section 2.3.2 for a definition).

The equation of motion (A.2) can be expressed with respect to the action of a
linear partial differential operator P , such that Pϕ = 0. In the following section we
shall discuss the problem of establishing the existence and uniqueness of the solution
of P .

105



Appendix A. Review of the free scalar theory

Starting from the action, we have characterized the space of configuration of the
scalar theory. Now we are ready to discuss the notion of smeared field, which shall
play a pivotal role in the algebraic quantization process.

Similarly to what is done in classical mechanics, observables can be defined as
functionals on the space of configuration Γ(K). From a field theoretical point of
view, we may consider some test function f ∈ Γ0(K), with Γ0(K) = C∞

0 (M) the
space of compactly supported smooth sections. We define the smeared classical field
as Ff (ϕ) : Γ(K) → R such that

Ff (ϕ)
.
=

∫
M
ϕ(x)f(x)

√−gd4x . (A.3)

By committing a little abuse of notation, we will denote Ff (ϕ)
.
= ϕ(f). From a

geometrical point of view, prescription (A.3) can be interpreted in terms of a bilinear
paring

⟨·, ·⟩ : Γ(K)× C∞
0 (M) → R , ϕ(f) = ⟨ϕ, f⟩ . (A.4)

As long as we consider off-shell configurations, namely those smooth sections which
does not satisfy the equation of motion (A.2), the pairing (A.4) is non-degenerate.
Indeed, if ϕ(f) = 0 for all test functions f , then ϕ(x) = 0. Moreover (A.3) is also
injective, since, given two different off-shell field configurations ϕ(x), ψ(x), there
always exists a test function f such that ϕ(f) ̸= ψ(f). From these observations we
can conclude that ϕ(f) is faithfully-labelled by f , hence we can identify Γ0(K) with
the space of off-shell smeared fields.

Let us now discuss how the dynamical constraint provided by the equation of
motion (A.2) on Γ(K) is transferred to ϕ(f). To this extent, we define

Sol(M) = {ϕ ∈ Γ(K) | Lϕ = 0} ,

the space of on-shell configuration. Again, we would like to reproduce the previous
steps, by defining the space of on-shell classical smeared fields as the set of function-
als acting on Sol(M). It comes trivially from the definition (A.3) that an observable
evaluated on some on-shell configuration satisfies the Einstein-Klein-Gordon equa-
tion, indeed, if ϕ ∈ Sol(M) then (Pϕ)(f) = 0. However, going on-shell introduces
also a degeneracy for (A.4) whenever considering test functions of the type h = Pf .
Integrating by parts, it follows that

ϕ(Pf) = ⟨ϕ, Pf⟩ = ⟨Pϕ, f⟩ = (Pϕ)(f) = 0 .

Hence ϕ(f + Ph) = ϕ(f) for all f, h ∈ Γ0(K). Up to this point, test functions does
not faithfully label on-shell observables. We overcome this problem by considering
the following equivalence classes of test functions

[f ] = {f ∈ Γ0(K) | f = h1 + Ph2 with h1, h2 ∈ Γ0(K)} .

We can recover non-degeneracy of (A.4) and thus a faithfully labelling for ϕ(f) by
redefining on-shell smeared fields as ϕ([f ]) := ⟨ϕ, f⟩, with f any representative of the
equivalence class. We conclude this discussion with a definition, which will be useful
for further classical discussions. Hence, we call space of on-shell classical smeared
fields

E(M) = Γ0(K)/L [Γ0(K)] .
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A.1.1 Fundamental solutions of the Einstein-Klein-Gordon equa-
tion

Given a spacetime (M, g), one important question is whether there always exist a
solution to equation (A.2) or not. As in the previous chapter, to provide a precise
answer to this interrogative, we have to restrict our attention to the class of normally
hyperbolic differential operators, thus answering with the following theorem [4, 3,
22].

Theorem 3. Let P : Γ(K) → Γ(K) be a normally hyperbolic operator on a globally
hyperbolic spacetime (M, g), which is the case provided by the field equation (A.2).
Then, the following results hold.

1. Let f ∈ Γ0(K) and Σ be a Cauchy surface of M, with n its future-oriented
timelike unit normal vector field. Let (u0, u1) ∈ C∞

0 (Σ) × C∞
0 (Σ) be a set of

initial data. Then, the Cauchy problem
Pϕ = f

ϕ|Σ = u0

∇nϕ|Σ = u1

has a unique solution ϕ ∈ Γ(K). Moreover,

suppu ⊂ J (suppf ∪ suppu0 ∪ suppu1) .

Moreover, the existence and uniqueness is guaranteed also when f , u0 and u1
are not compactly supported.

2. There exist unique retarded E+ and advanced E− fundamental solutions of P .
Namely, there are unique continuous maps E± : Γ0(K) → Γ(K), which satisfy

P (E±f) = E±(Pf) = f , supp(E±f) ⊂ J±
M(supp f)

for all f ∈ Γ0(K).

Starting from this result, we can define the causal propagator as

E
.
= E− − E+ , (A.5)

which satisfies
P (Ef) = 0 , supp(E) ⊂ JM(supp(f)) .

Moreover, the causal propagator satisfies a fundamental property. Given Σ a Cauchy
surface, with n its future-oriented timelike unit normal vector field, from the defi-
nition it follows that [21]

E|Σ = 0 ,

∇nE|Σ = δ4 . (A.6)

Contrary to the case of linearized gravity, the computation of the propagators of a
scalar field is easier to achieve. In the following section we shall see how to determine
E from the field equation (A.2), highlighting the differences encountered by adopting
two choices of the spacetime background.
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A.1.2 Explicit construction of the causal propagator in Minkowski
background

Before exploring the curved realm, we shall review the well known case of a scalar
field propagating on a static and flat spacetime, namely the Minkowski background.
Usually, the computation of the causal propagator is provided through the canonical
formalism of creation and annihilation operators. For the following, we shall embrace
a distributional point of view, which finds a more suitable generalization to curved
spacetimes.

Let us consider a Minkowski background, endowed with the usual metric η, such
that

ds2 = −dt2 + dx2 + dy2 + dz2

With this particularly choice of the spacetime geometry, the minimally coupled
Klein-Gordon equation (A.2) reduces to the flat wave equation(

ηµν∂µ∂ν −m2
)
ϕ = 0 ,

which leads to the following definition of a linear partial differential operator, driving
the dynamics of the classical field

P
.
= −∂2t +∇2 −m2 (A.7)

Being L a normally hyperbolic operator, we compute the retarded and advanced
propagator E±, actually the fundamental bi-solutions of (A.7) whose existence and
uniqueness is guaranteed by theorem 3. Writing down the key condition, PE± = id,
with respect to the distributional kernel of the fundamental solutions, we get that

PE±(x, y) = δ4(x− y) . (A.8)

This equation can be simplified, exploiting Poincaré invariance and restricting the
dependence of E±(x, y) to differences of points of the spacetime. Thus, the funda-
mental solution can be derived with respect to E±(x−y), which allows us to Fourier
transform (A.8), getting

−(k2 +m2)Ê±(k) = 1 ,

where k2 = −k20 + |⃗k|2. Due to the on-shell singularity, we can’t invert the last
equation without giving some suitable boundary condition to compute the following
integral ∫ ∫ +∞

−∞

eik0(x
0−y0)eik⃗·(x⃗−y⃗)

[k0 − ω(k)] [k0 + ω(k)]
dk0d

3k , (A.9)

where ω(k)
.
= |⃗k|2 +m2.

Retarded propagator Before computing E+, we consider its action on test ten-
sors of Γ0(K), which reads in terms of its distributional kernel

(E+f)(x) =

∫
supp f

E+(x, y)f(y)d4y .
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We recall that, by theorem 3, supp(E+f) = J+
M(supp f). To make use of this obser-

vation, we recall that Poincaré invariance of the Minkowski background guarantees
that

E+(x, y) = E+(x− y)

The fundamental property of the supp(E+f), brings an additional constraint on the
dependence of E+ from x, y. Indeed, given any point y ∈ supp f , then x need to
belong to the future cone of y, which implies that

E+(x− y) = 0 if x0 − y0 < 0 . (A.10)

Let us consider the following integration, which is involved in (A.9)

I .
=

∫ +∞

−∞

eik0|x
0−y0|

[k0 − ω(k)] [k0 + ω(k)]
dk0 , (A.11)

where we have taken the absolute value of (x0 − y0) to ensure property (A.10). In
order to choose the integration path, thus taking care of the singularities in ±ω, we
observe that

eik0|x
0−y0| −−−−→

y→±∞
0 if Im(k0) > 0 .

Hence, we can achieve (A.11) by means of the residues theorem [2], which gives a
singularities contribution Re = iω−1 sin

[
ω(x0 − y0)

]
, leading to

I = −2π

ω
sin

[
ω(x0 − y0)

]
.

Finally, we can substitute this result in (A.9) thus getting the expression of the
retarded propagator

E+(x, y) =


− 1

2π3

∫
1

ω
sin

[
ω(x0 − y0)

]
eik⃗·(x⃗−y⃗)d3k if x0 − y0 > 0

0 otherwise

.

Advanced propagator For the advanced fundamental solution E− we can re-
peat exactly the same argument of E+. As far as concerned by E−(x − y), since
supp(E−f) = J−

M(supp f), we have that given any point y ∈ supp f , x need to
belong to the future cone of y, thus leading to

E−(x− y) = 0 if x0 − y0 > 0 .

Mutatis mutandis, the integration (A.9) gives a residue Re = −iω−1 sin
[
ω(x0 − y0)

]
,

thus obtaining

E−(x, y) =


+

1

2π3

∫
1

ω
sin

[
ω(x0 − y0)

]
eik⃗·(x⃗−y⃗)d3k if x0 − y0 < 0

0 otherwise

.
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Causal propagator Starting from the previous results, we can exploit definition
(A.5), thus obtaining the following expression of the causal propagator

E(x, y) =
1

2π3

∫
1

ω
sin

[
ω(x0 − y0)

]
eik⃗·(x⃗−y⃗)d3k .

A.1.3 Explicit construction of the causal propagator in Schwarzschild
background

We consider a Schwarzschild background spacetime, equipped with the usual metric
g, such that

ds2 = −
(
1− Rs

r

)
dt2 +

(
1− Rs

r

)−1

+ r2dθ2 + r2 sin2 θdφ2 ,

where Rs = 2M is the Schwarzschild radius. To further purpose, we recall that this
metric is the most general stationary, thus admitting a Killing vector field, associated
with time-translation invariance.

With this particularly choice of the metric, the differential operator associated
to the minimally coupled Klein-Gordon equation (A.2) becomes

P = −
(
1− Rs

r

)−1

∂2t +

(
1− Rs

r

)
∂2r −

(
Rs − 2r

r2

)
∂r +

L2

r2
−m2 ,

where L2 represents the squared angular momentum operator, defined as

L2 .
=

1

sin2 θ
∂2φ +

1

sin θ
(sin θ∂θ) .

We shall compute directly the causal propagator starting from the pivotal property

PE = 0 , (A.12)

which actually states that the distributional kernel E(x, x′) is a bi-solution of P ,
since it satisfies the field equation (A.12) in both arguments. We start our discussion
searching for solutions of (A.12) by separation of variables

E(x, x′) → A(t, r)Θ(θ, φ)F (t′, x⃗′) .

We substitute this prescription in the equation of motion (A.12). By introducing
l(l + 1) as a separation constant, the angular eigenfunctions equation reads

L2Ylm(θ, φ) = −l(l + 1)Ylm(θ, φ) ,

where Ylm(θ, φ) are the usual spherical harmonics [2]. On the other hand, the radial
equation gives

−
(
1− Rs

r

)−1

∂2tA+

(
1− Rs

r

)
∂2rA−

(
Rs − 2r

r2

)
∂rA =

l(l + 1)

r2
A+m2A . (A.13)

To simplify our computations, we express (A.13) in terms of the tortoise coordinate
r∗, given by (1.12) and which satisfies (1.13). Moreover, by substitution of u

.
= rA in
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(A.13), we find that the first radial derivative term vanishes. After this observations,
the radial equation finally becomes[

∂2t − ∂2r∗ + Vl(r∗)
]
ul(t, r∗) = 0 , (A.14)

where we have introduced a potential Vl as

Vl(r∗)
.
=

(
1− Rs

r

)(
l(l + 1)

r2
+
Rs

r3
+m2

)
.

We may go a little further, Fourier transforming (A.14) with respect to the Killing
time t of g, thus obtaining

−∂2r∗ ûl(ω, r∗) =
[
ω2 − Vl(r∗)

]
ûl(ω, r∗) .

Unfortunately, equation (A.14) does not have any analytical solution, firstly due to
the non trivial expression of r(r∗) in terms of the Lambert function [19]. Neverthe-
less, some useful information about the asymptotic behaviour of u can be deduced,
making use of standard scattering theory [20, 21].

Being E(x, x′) a bi-solution of (A.12), we can achieve the same results for
F (t′, x⃗′). Finally, we can form any bi-solution of (A.12) by taking a linear combina-
tion of the angular and radial eigenfunctions. By inverting the Fourier transform,
we get

E =

∫
ei(ωt+ωt′)

2π
√
ωω′

∑
l,l′

l∑
m=−l

l′∑
m′=−l′

Cmm′
ll′ Y m

l (θ, φ)Y m′
l′ (θ′, φ′)ûl(ω, r∗)ûl′(ω

′, r′∗)dωdω
′ .

(A.15)
However, this expression is far too difficult to deal with. However, due to the
symmetries of the Schwarzschild spacetime together with the properties of the causal
propagator, we can simplify it.

Given a bi-distribution f(t, t′), we can simplify its Fourier transform f̂(ω, ω′) by
exploiting time-translation invariance. Indeed, from the definition

f̂(ω, ω′) =
1

2π

∫
f(t, t′)e−iωte−iω′t′dtdt′ . (A.16)

If time-translation invariance holds, then f(t, t′) = f(t− t′). Under the substitution
u = t− t′, we get

f̂(ω, ω′) =
1

2π

∫
f(u)e−iωue−i(ω+ω′)t′dudt′ ,

which leads to the following relation

f̂(ω, ω′) = δ(ω + ω′)f̂(ω) .

We consider now the Fourier transform of our bi-solution, such that

E(x, x′) =
1

2π

∫
Ê(ω, ω′, x⃗, x⃗′)ei(ωt+ωt′)dωdω′ ,
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with Ê(ω, ω′, x⃗, x⃗′) given by (A.15). By repeating the same argument already used
for (A.16), we obtain that

Ê(ω, ω′, x⃗, x⃗′) = δ(ω + ω′)Ê(ω, x⃗, x⃗′) . (A.17)

Moreover, since the field ϕ is real, then also E(x, x′) does. From a Fourier point of
view, this implies that

Ê∗(ω, x⃗, x⃗′) = Ê(−ω, x⃗, x⃗′) . (A.18)

By substitution of (A.17) and (A.18), while integrating the Dirac delta with respect
to ω′, we get

E = −i
∫
eiω(t−t′)

2πω

∑
l,l′

l∑
m=−l

l′∑
m′=−l′

Cmm′
ll′ Y m

l (θ, φ)Y m′
l′ (θ′, φ′)ûl(ω, r∗)û

∗
l′(ω, r

′
∗)dω .

(A.19)
Finally, we ask E to be the causal propagator by actually requiring that it satisfies
the boundary condition (A.6). To this extent, we replace τ

.
= t− t′ in (A.19). Then,

we choose a suitable Cauchy surface Σ, in which the initial data with respect to τ
can be considered. Therefore, being E a scalar, equation (A.6) simply reads

∂τE
(
τ, x⃗, x⃗′

)∣∣
Σ
=

1

r2
δ(r − r′)δ(cos θ − cos θ′)δ(ϕ− ϕ′) (A.20)

To make use of this distributional relation, we consider the action of ∂τE on a (real)
test function f . Focusing on the angular dependence, we expand f(θ, ϕ) in spherical
harmonics

f(θ, φ) =
∑

fpqY
q
p (θ, φ) =

∑
f∗pqY

∗q
p (θ, φ) . (A.21)

By considering the angular dependence of ⟨∂tE, f⟩ while integrating the angular
Dirac delta in (A.20), we obtain∑

Cmm′
ll′

∫
Y m
l (θ, φ)Y m′

l′ (θ′, φ′)f(θ, φ)dΩ = f(θ′, φ′) .

By substitution of (A.21) in both members, while exploiting the orthonormality of
spherical harmonics

∫
Y m
l Y ∗q

p dΩ = δmq δ
l
p, we get∑

Cmm′
ll′ Y m′

l′ (θ′, φ′)f∗lm = f(θ′, φ′) .

Expanding one more time the right-hand side and equating both members “mode
by mode”, we get the fundamental property∑

Cmm′
ll′ Y m′

l′ (θ′, φ′) = Y ∗m
l (θ′, φ′) .

Actually this result can also be extended by considering test functions which also
depend from r. By exploiting the completeness relation of û(ω, r∗) [21, Ch. 2]

+∞∑
l=0

1

2π

∫ +∞

−∞
ûl(ω, r∗)û

∗
l (ω, r

′
∗)dω =

1

r2
δ(r − r′) ,
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and thus repeating the former argument for f(r, θ, φ), we get that∑
Cmm′
ll′ Y m′

l′ (θ′, φ′)ûl(ω, r∗)û
∗
l′(ω, r

′
∗) = Y ∗m

l (θ′, φ′)ûl(ω, r∗)û
∗
l (ω, r

′
∗) .

Finally, we can substitute this result in (A.19), getting the following expression of
the causal propagator [8]

E = −i
∫
eiω(t−t′)

2πω

∑
l,m

Y m
l (θ, φ)Y ∗m

l (θ, φ)ûl(ω, r∗)û
∗
l′(ω, r

′
∗)dω .

A.2 Quantum theory

Once that the classical theory is known, the quantization of the Klein-Gordon field on
a curved spacetime background (M, g) can be achieved by means of the algebraic
framework, where the causal propagator E plays a pivotal role in encoding the
dynamical information of the field equation (A.2) in the canonical commutation
rules.

Contrary to the case of linearized gravity, the action (A.1) has no symmetry
which requires any treatment via BRS formalism. Hence, the quantization can be
achieved by promoting the smeared field to an element of a unital ∗-algebra A(M),
with unity Î, which satisfies [31, 4]

1. Linearity: ϕ̂(c1f1 + c2f2) = c1ϕ̂(f1) + c2ϕ̂(f2), with c1, c2 ∈ C .

2. Hermiticity: ϕ̂(f)∗ = ϕ̂(f∗) .

3. Symmetry: ϕ̂(f) = 0, for any anti-symmetric f ∈ Γ0(V) .

4. Field equations: ϕ̂(Pf) = 0 .

5. Commutation relation: [ϕ̂(f), ϕ̂(f ′)] = iE(f, f ′)Î .

Here f is any test tensor of Γ0(K). Hence we call observable any element O ∈ A(M),
written as a polynomial of the generators of the algebra [31], such that

Ô∗ = Ô .

Once that abstract structure of the algebra of fields is know, we can define a state
ω as any positive and normalized functional [31]

ω : A(M) → C ,

which allows to compute the expectation value of any observable of the algebra ⟨O⟩ω.
Again, we are interested in working with those state whose two-point correlation

function ω(x, x′) .= ⟨ϕ̂(x)ϕ̂(x′)⟩ω, which defined as

ω(ϕ̂(f)ϕ̂(f ′)) .=
∫
ω(x, x′)f(x)f ′(x′)

√−g
√

−g′d4xd4x′ ,

has a universal divergent behaviour. Indeed, we call Hadamard quasi-free state, any
state ω, such that ω(x, x′) satisfies

ω(x, x′) = lim
ϵ↓0

1

8π2
(
hϵ(x, x′) + w(x, x′)

)
, (A.22)
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with w a symmetric bi-scalar regular on the coinciding point limit, which encodes
the freedom in the choice of the state ω, and h the Hadamard parametrix given by

hϵ(x, x′) .=
u(x, x′)
σϵ(x, x′)

+ v(x, x′) log
(
σϵ(x, x

′)
λ2

)
, (A.23)

which, on the other hand, describes the divergent behaviour of ω. Here σ is half the
squared geodesic distance (3.48) between x and x′, while u and v are two smooth
bi-scalar.

The structure of the classical theory, encoded by P and stored in ω, arises when
recalling that the two-point correlation function of a quasi-free state, which com-
pletely describes ω by the Wick theorem [31], satisfies

ω(f, f ′)− ω(f ′, f) = iE(f, f ′) ,

ω(Pf, f ′) = ω(f, Pf ′) = 0 . (A.24)

Moreover, we can repeat the same argument of section (3.5.2), expanding v in series
of σ

v(x, x′) =
∞∑
n=0

v(n)(x, x′)σn .

Indeed, we impose the equation of motions P (h+w) = 0 (A.24) while requiring that
the singular terms of h cancel each other out, order by order in σ. Again, the result
of this discussion leads to the Hadamard recursive relations [22]

2∇µσ∇µu+ (□− 4)u = 0 ,

Pu+□σv(0) − 2v(0) + 2∇µσ∇µv(0) = 0 , (A.25)

P ṽ(n) + 2(n+ 1)∇µσ∇µṽ(n+1) + (n+ 1)(□σ + 2n)ṽ(n+1) = 0 . (A.26)

These equations can be solved, upon the choice of suitable initial conditions. Usually,
in order to recover the limit of the Minkowski spacetime, one requires that [u] = 11,
allowing u to be expressed in term of the Van Vleck-Morette determinant (3.63) [22,
34]. By exploiting this data while taking the coinciding point limit of (A.25) and
(A.26) we obtain that

[v(0)] =
1

2
[Pu] ,

[v(n+1)] =
1

2(n+ 1)(n+ 2)
[Pv(n)] .

Indeed, the v0 coefficient satisfies [23]

[v0] =
1

2

[
m2 +

(
ξ − 1

6

)
R

]
,

while the v1 coefficient reads

[v1] =
m4

8
+

(6ξ − 1)m2R

24
+

(6ξ − 1)m2R

288
+

+
(1− 5ξ)□R

120
− RabR

ab

720
+
RabcdR

abcd

720
. (A.27)

1As in the rest of this thesis, we are denoting the coinciding point limit as [u]
.
= limx′→x u(x, x

′).
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Since these two objects are scalars, we compute them for a specific choice of the
metric g, obtaining then a results which holds on any spacetime. By choosing the
Schwarzschild background (4.38), for a massless and conformally coupled scalar field,
it follows that

[v0] = 0 ,

[v1] =
48

720

M2

r6
, (A.28)

with M the mass of the black hole, and r the radial coordinate.
Once that the behaviour of Hadamard states is known, we can extend the algebra

A(M) to include also monomials like ϕ̂2, by regularizing the two-point correlation
function, through the subtraction of the divergences encoded by the Hadamard
parametrix (A.23) via the so-called point-splitting prescription [22]

: ϕ̂(x)ϕ̂(x′) : .= ϕ̂(x)ϕ̂(x′)− 1

8π2
h(x, x′)Î−H(x, x′)Î ,

with H(x, x′) any bi-scalar, which has finite coinciding point limit. According to
this procedure, the expectation value of ϕ̂2 gives

⟨: ϕ̂(x)ϕ̂(x) :⟩ω =
1

8π2
[w]− [H] . (A.29)

More details about this machinery can be found in section 3.5.4. Before ending this
discussion, we point out that the degrees of freedom brought by H(x, x′) cannot be
neglected. Indeed, under the requirement of covariance and locality, they can be
classified in the following way [36]

: ϕ̂2(x)′ : = : ϕ̂2(x) : +
(
α1R+ α2m

2
)
Î , (A.30)

with α1, α2 two arbitrary renormalization constants.

115





Appendix B

The geometrical approach

In this section we discuss the geometrical contribution to the perturbed Raychaud-
huri’s equation (4.1). We start again from the linearization of the complete metric
(2.1), being

g̃ab = gab + εγab +O(ε2) , (B.1)

g̃ab = gab − εγab +O(ε2) . (B.2)

Again we are adopting the convention of [48], actually using the background metric
gab to raise and lower the indices. We consider the effect related to the presence
of gravitational radiation by means of an expansion of the fundamental quantities
related to the congruence, namely the tangent vector field k and the deviation tensor
B

ka → ka + εξa ,

Bab → Bab + εBab ,

as a consequence of prescription (B.1) and (B.2). During sections B.1 and B.2 we
shall investigate the relation between ξ, B and γ.

B.1 Perturbations and geodesics

In order to understand the geometrical contribution to (4.1), it is necessary to study
the role of the modification to the geodesics paths, induced by the gravitational
perturbation γ. This can be done by means of a perturbative analysis of the geodesic
equation on the complete spacetime (M̃, g̃).

We consider two vector fields k̃,k, which respectively describe the congruences
associated to the complete and background spacetimes.

As stressed in the first chapter, we model the static spherically symmetric black
hole by endowing the background spacetime with the Kruskal metric (1.18). More-
over, we restrict our attention to a congruence of radial null geodesics k, which in
null coordinates is given by (1.39).

We consider a linear expansion of the congruence tangent vector field, which,
under prescription (B.1), gives

k̃a
.
= ka + εξa +O(ε2) . (B.3)
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According to our initial choice (1.39), k is a null geodesic on the background space-
time. We assume that any gravitational perturbation preserves this fundamental
property, by actually requiring that

g̃abk̃
ak̃b = 0 .

By substitution of (B.3), we isolate the zeroth and first order terms, respectively
getting

gabk
akb = 0 , (B.4)

gabξ
akb + γabk

akb = 0 . (B.5)

Actually, property (B.4) is nothing but the null requirement for the contribution of
the congruence on the background spacetime (M, g), which is preserved as perturbation-
free limit. Moreover, we ask k̃ to satisfy the geodesics equation on the complete
spacetime (M̃, g̃), which naturally reads as

k̃a∇̃ak̃
b = 0 .

We expand this equation, with respect to (B.3) and the expression of the complete
covariant derivative (2.2). The zeroth order term reduces to the background geodesic
equation ka∇ak

b = 0, while at first order we get

ka∇aξ
c + ξa∇ak

c + Cc
abk

akb = 0 ,

By substitution of (2.8), we get

ka∇aξ
c + ξa∇ak

c + kakb∇aγbc − 1
2kakb∇cγab = 0 . (B.6)

Once that the initial condition for ξ is given, that is ξ = 0 in the past when there
is no gravitational radiation, we can solve (B.6) to uniquely express the first order
contribution ξ in terms of the perturbation field γ.

An additional constraint on γ can be obtained by contracting (B.6) with kb.
Indeed, properties (B.4) and (B.5), together with the background geodesic equation,
give

kc∇c(kakbγ
ab) = kakbk

c∇cγ
ab = 0 .

Hence, the scalar kakbγ
ab is constant along the background geodesics congruence.

B.2 Perturbations and the squared shear tensor

In order to get an expression for σ̂
(1)
ab σ̂

ab
(1) to in (4.1), we consider the effect of γ on

the deviation tensor B, given by (1.20). As for the congruence vector field k, we
model the effect of the perturbation γ by means of the following linear expansion

B̃ab = Bab + εBab +O(ε2) .

Indeed, we start from the definition (1.20), which on the complete spacetime reads

B̃ab = g̃ac∇̃bk̃
c .
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Expanding this definition with respect to (B.3), (2.1) and (2.2), we get

B̃ab = ∇bka + ε(∇bξa + γac∇bk
c + gacC

c
bdk

d) +O(ε2) . (B.7)

Before exploiting this prescription to quantify the effect of gravitational radiation,
we firstly consider the transverse component of B̃, by means of the projector h̃
(1.27), which on the complete spacetime reads

h̃ b
a = δ b

a + g̃ack̃
c l̃b + g̃ac l̃

ck̃b , (B.8)

with g̃abk̃
a l̃b = −1. By simply translating (1.28) to the complete spacetime notation,

we get
k̃ah̃ b

a = 0 , g̃bck̃
bh̃ c

a = 0 . (B.9)

Again, we consider the definition of B̂ (1.26), which on (M̃, g̃) reads

ˆ̃
Bab = h̃ c

a h̃
d
b B̃cd . (B.10)

Since k̃ satisfies both the null condition and the geodesic equation, property (1.21)
can be translated to the complete spacetime as

k̃aB̃ab = k̃aB̃ba = 0 .

We exploit this property to simplify the computation of σ̂. Indeed, a partial substi-
tution of (B.8) in (B.10) gives

h̃ d
b B̃cd = (δ d

b + g̃bek̃
e l̃d + g̃be l̃

ek̃d)B̃cd = (δ d
b + g̃be l̃

ek̃d)B̃cd ,

by multiplying once more, we get

ˆ̃
Bab = (δ c

a + g̃aek̃
e l̃c + g̃ae l̃

ek̃c)h̃ d
b B̃cd = (δ c

a + g̃ae l̃
ck̃e)(δ d

b + g̃bf l̃
dk̃f )B̃cd .

Before giving further details, we recall the properties of the shear tensor. In section
1.4 we have discussed what happens when considering a Kruskal background, which
from (1.30) gives

σ̂ab|H+ = ˆ̃B(ab) +O(ε2) , σ̂
(0)
ab |H+ = 0 ,

and then

σ̂abσ̂
ab|H+ =

d

dε2
( ˆ̃B(ab)

ˆ̃Bab)

∣∣∣∣
ε=0

+O(ε3) . (B.11)

To this extent we compute the squared deviation tensor, which, by a partial substi-
tution of the previous results, reads

ˆ̃B(ab)
ˆ̃Bab = g̃alg̃bmh̃ e

l h̃
f

m B̃cdB̃ef (δ
c

(a + g̃e(a l̃
ck̃e)(δ d

b) + g̃b)f l̃
dk̃f ) =

= g̃alg̃bmh̃ e
l h̃

f
m B̃cdB̃ef (δ

c
(a δ

d
b) + g̃e(aδ

d
b) l̃

ck̃e + δ c
(a g̃b)f l̃

dk̃f + g̃e(ag̃b)f l̃
dk̃f l̃ck̃e)

We employ property (B.9), which makes the last three terms vanish (being con-
tracted with h̃). Exploiting the Kronecker delta, we get that

ˆ̃B(ab)
ˆ̃Bab = g̃alg̃bmh̃ e

l h̃
f

m B̃(ab)B̃ef .
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Again, property (B.9) hits both the deviation tensor contributions, neglecting the k̃
terms contained in h̃, finally giving

ˆ̃B(ab)
ˆ̃Bab = g̃acg̃bdB̃(ab)B̃cd .

From this last result we can obtain an expression for σ̂
(1)
ab σ̂

ab
(1), by actually substituting

(B.7) and then isolating the second order terms, according to observation (B.11).
Indeed, we obtain that

ˆ̃B(ab)
ˆ̃Bab = (gac−εγac)(gbd−εγbd)[∇(bka)+ε(∇(bξa)+γe(a∇b)k

e+ge(aC
e
b)f k

f )]B̃cd .

In particular, we consider the first three factors, which give

(gac − εγac)(gbd − εγbd)[∇(bka) + ε(∇(bξa) + γe(a∇b)k
e + ge(aC

e
b)f k

f )] =

= ∇(dkc) + ε[∇(dξc) + γ (c
e ∇d)ke + gacgbdge(aC

e
b)f k

f − γ c
a ∇(dka) − γ d

b ∇(bkc)]+

+ ε2[γacγbd∇(bka) − γ c
a ∇(dξa) − γ c

a γ
(a

e ∇d)ke − γacgbdge(aC
e
b)f k

f+

− γ d
b ∇(bξc) − γ d

b γ
(c

e ∇b)ke − γbdgacge(aC
e
b)f k

f ] +O(ε3) .

By substitution into the expansion of ˆ̃B(ab)
ˆ̃Bab, we get that

ˆ̃B(ab)
ˆ̃Bab =

{
∇(dkc) + ε

[
∇(dξc) + γ (c

e ∇d)ke + gacgbdge(aC
e
b)f k

f − γ c
a ∇(dka)+

− γ d
b ∇(bkc)

]
+ ε2

[
γacγbd∇(bka) − γ c

a ∇(dξa) − γ c
a γ

(a
e ∇d)ke − γacgbdge(aC

e
b)f k

f

− γ d
b ∇(bξc) − γ d

b γ
(c

e ∇b)ke − γbdgacge(aC
e
b)f k

f
]}{

∇dkc + ε
[
∇dξc + γgc∇dk

g+

+ ghcC
h
dik

i
]}

According to (B.11), we isolate the second order terms, thus getting

σ̂abσ̂
ab|H+ = ∇(dξc)∇dξc + γ (c

e ∇d)ke∇dξc + ge(aC
e
b)f k

f∇bξa − γ c
a ∇(dka)∇dξc+

− γ d
b ∇(bkc)∇dξc +∇(dξc)γgc∇dk

g + γ (c
e ∇d)keγgc∇dk

g + ge(aC
e
b)f k

fγ a
g ∇bkg+

− γ c
a ∇(dka)γgc∇dk

g − γ d
b ∇(bkc)γgc∇dk

g +∇(dξh)C
h
dik

i + γe(h∇d)keCh
dik

i+

+ gbdge(aC
e
b)f k

fCa
dik

i − γah∇(dka)Ch
dik

i − γbd∇(bkh)C
h
dik

i + γacγbd∇(bka)∇dkc+

− γ c
a ∇(dξa)∇dkc − γ c

a γ
(a

e ∇d)ke∇dkc − γacge(aC
e
b)f∇bkck

f − γ d
b ∇(bξc)∇dkc+

− γ d
b γ

(c
e ∇b)ke∇dkc − γbdge(aC

e
b)f k

f∇dk
a ,

with the crossed symmetrization defined as

∇(dξh)
.
= 1

2(∇dξh +∇hξ
d)

We isolate the different terms of the second last expression, searching for some
simplification. By resolving the symmetrization of all the different contributions we
get

σ̂abσ̂
ab|H+ = 1

2∇(dξc)∇dξc +∇dξhC
h
dik

i +∇hξ
dCh

dik
i − γbd∇dkeC

e
bf k

f+

− 1
2γ

ac∇ekcC
e
af k

f − 1
2γed∇dkaCe

af k
f − γ d

b ∇bξc∇dkc − γ d
b ∇cξb∇dkc+

−γ c
a γ

g
c ∇akd∇dkg− 1

2γ
c
aγ

a
e∇dke∇dkc− 1

2γbdγec∇bke∇dkc+gbdge(aC
e
b)f k

fCa
dik

i
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By substitution of (2.8), we obtain that

∇dξhC
h
dik

i +∇hξ
dCh

dik
i = ∇mξdki∇iγmd ,

gbdge(aC
e
b)f k

fCa
dik

i = 1
4k

ikf∇fγ
dk∇iγdk ,

together with

− γbd∇dkeC
e
bf k

f − 1
2γ

ac∇ekcC
e
af k

f − 1
2γed∇dkaCe

af k
f =

= −1
2γ

bd∇dk
mkf∇fγmb − 1

2γ
b
d∇(dkm)kf (∇bγmf +∇fγmb −∇mγbf ) .

By substitution of these relations in the former expression of the squared shear
tensor, we finally obtain that

σ̂abσ̂
ab|H+ = 1

2∇(dξc)∇dξc +∇mξdki∇iγmd − γ d
b ∇bξc∇dkc − γ d

b ∇cξb∇dkc

− 1
2γ

bd∇dk
mkf∇fγmb − 1

2γ
b
d∇(dkm)kf (∇bγmf +∇fγmb −∇mγbf )+

− γ c
a γ

g
c ∇akd∇dkg − 1

2γ
c
aγ

a
e∇dke∇dkc − 1

2γbdγec∇bke∇dkc + 1
4k

ikf∇fγ
dk∇iγdk

This result describes the relation between the squared shear tensor and the presence
of quantum gravitational radiation, explicitly through γ and the geodesic correction
ξ, which both contribute to the right-hand side of the perturbed Raychaudhuri’s
equation (4.1).

From a physical point of view, the presence of the perturbation field has modified
the background spacetime, deforming the shape of the congruence of radial null
outgoing geodesics: at the initial time the event horizon of the Kruskal background
is stable, since all the congruence parameters vanish on H+. As discussed in section
4.4, the presence of quantum gravitational radiation modifies this property, thus
allowing for a positive flux of outgoing energy through H+, which here is accounted
by σ̂abσ̂

ab. This situation is briefly sketched in figure 4.2, at the end of section 4.4.

121





References

[1] B. Allen, A. Folacci, and A. C. Ottewill. “Renormalized graviton stress-energy
tensor in curved vacuum space-times”. In: Phys. Rev. D 38.4 (1988).

[2] G. B. Arfken and H. J. Weber. Mathematical Methods for Physicists. Sixth
Edition. Elsevier Academic Press, 2005.

[3] C. Baer, N. Ginoux, and F. Pfaeffle. “Wave equations on Lorentzian manifolds
and quantization”. In: (2008). arXiv: 0806.1036 [math.DG].

[4] M. Benini and C. Dappiaggi. “Models of free quantum field theories on curved
backgrounds”. In: (2015). arXiv: 1505.04298 [math-ph].

[5] M. Benini, C. Dappiaggi, and S. Murro. “Radiative observables for linearized
gravity on asymptotically flat spacetimes and their boundary induced states”.
In: Journal of Mathematical Physics 55.8 (2014). arXiv: 1404.4551 [gr-qc].

[6] N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space. Cam-
bridge Monographs on Mathematical Physics. Cambridge, UK: Cambridge
Univ. Press, 1984.

[7] R. Brunetti, K. Fredenhagen, and K. Rejzner. “Quantum gravity from the
point of view of locally covariant quantum field theory”. In: Commun. Math.
Phys. 345.3 (2016). arXiv: 1306.1058 [math-ph].

[8] P. Candelas. “Vacuum polarization in Schwarzschild spacetime”. In: Phys. Rev.
D 21.8 (1980).

[9] S. M. Carrol. Spacetime and Geometry. Cambridge University Press, 2019.

[10] S. M. Christensen and M. J. Duff. “Axial and Conformal Anomalies for Arbi-
trary Spin in Gravity and Supergravity”. In: Phys. Lett. B 76 (1978).

[11] S. M. Christensen and S. A. Fulling. “Trace anomalies and the Hawking effect”.
In: Phys. Rev. D 15.8 (1977).

[12] C. Dappiaggi, V. Moretti, and N. Pinamonti. “Rigorous construction and
Hadamard property of the Unruh state in Schwarzschild spacetime”. In: Adv.
Theor. Math. Phys. 15.2 (2011). arXiv: 0907.1034 [gr-qc].

[13] B. S. DeWitt and R. Stora, eds. Relativity, Groups and Topology. Vol. 2. North-
Holland, 1984.

[14] M. Duetsch and Fredenhagen K. Perturbative renormalization and BRST.
2004. arXiv: hep-th/0411196 [hep-th].

[15] G. F. R. Ellis and S. W. Hawking. The Large Scale Structure of Space-Time.
The University of Chicago Press, 1973.

123

https://arxiv.org/abs/0806.1036
https://arxiv.org/abs/1505.04298
https://arxiv.org/abs/1404.4551
https://arxiv.org/abs/1306.1058
https://arxiv.org/abs/0907.1034
https://arxiv.org/abs/hep-th/0411196


References

[16] M. Faizal. “Perturbative quantum gravity and Yang-Mills theories in de Sitter
spacetime”. PhD thesis. 2011. arXiv: 1105.3112 [gr-qc].

[17] M. Faizal and A. Higuchi. “Faddeev-Popov-ghost propagators for Yang-Mills
theories and perturbative quantum gravity in the covariant gauge in de Sitter
spacetime”. In: Physical Review D 78.6 (2008). arXiv: 0806.3735 [gr-qc].

[18] C. J. Fewster and D. S. Hunt. “Quantization of linearized gravity in cosmo-
logical acuum spacetimes”. In: Reviews in Mathematical Physics 25.02 (2013).
arXiv: 1203.0261 [math-ph].

[19] P. P. Fiziev. “Exact solutions of Regge–Wheeler equation and quasi-normal
modes of compact objects”. In: Classical and Quantum Gravity 23.7 (2006).
arXiv: gr-qc/0509123 [gr-qc].

[20] K. Fredenhagen and R. Haag. “On the derivation of Hawking radiation associ-
ated with the formation of a black hole”. In: Communications in Mathematical
Physics 127 (1990).

[21] S. A. Fulling. Aspects of Quantum Field Theory in Curved Space-time. Vol. 17.
1989.

[22] T. P Hack. “Cosmological applications of algebraic quantum field theory in
curved spacetimes”. In: (2015). arXiv: 1506.01869 [gr-qc].

[23] T. P Hack. “On the backreaction of scalar and spinor quantum fields in curved
spacetimes”. PhD thesis. 2010. arXiv: 1008.1776 [gr-qc].

[24] T. P. Hack. “Quantization of the linearized Einstein–Klein–Gordon system on
arbitrary backgrounds and the special case of perturbations in inflation”. In:
Classical and Quantum Gravity 31.21 (2014). arXiv: 1403.3957 [gr-qc].

[25] S. W. Hawking. “Particle creation by black holes”. In: Comm. Math. Phys.
43.3 (1975).

[26] G. Hofmann. “On GNS representations on inner product spaces”. In: Commu-
nications in Mathematical Physics 191 (1998).

[27] S. Hollands. “Renormalized quantum Yang–Mills fields in curved spacetime”.
In: Reviews in Mathematical Physics 20 (2008). arXiv: 0705.3340 [gr-qc].

[28] S. Hollands and R. M. Wald. “Stability of Black Holes and Black Branes”.
In: Communications in Mathematical Physics 321.3 (2012). arXiv: 1201.0463
[gr-qc].

[29] Wolfram Research Inc. Mathematica, Version 12.1.

[30] I. Khavkine. “Explicit triangular decoupling of the separated Lichnerowicz
tensor wave equation on Schwarzschild into scalar Regge-Wheeler equations”.
In: (2020). arXiv: 2004.09651 [gr-qc].

[31] I. Khavkine and V. Moretti. “Algebraic QFT in curved spacetime and quasifree
Hadamard states: an introduction”. In: Mathematical Physics Studies (2015).
arXiv: 1412.5945 [math-ph].

[32] A. Koenigstein, F. Giacosa, and D. H. Rischke. “Classical and quantum theory
of the massive spin-two field”. In: Annals Phys. 368 (2016). arXiv: 1508.00110
[hep-th].

124

https://arxiv.org/abs/1105.3112
https://arxiv.org/abs/0806.3735
https://arxiv.org/abs/1203.0261
https://arxiv.org/abs/gr-qc/0509123
https://arxiv.org/abs/1506.01869
https://arxiv.org/abs/1008.1776
https://arxiv.org/abs/1403.3957
https://arxiv.org/abs/0705.3340
https://arxiv.org/abs/1201.0463
https://arxiv.org/abs/1201.0463
https://arxiv.org/abs/2004.09651
https://arxiv.org/abs/1412.5945
https://arxiv.org/abs/1508.00110
https://arxiv.org/abs/1508.00110


References

[33] C. Kuo and L. H. Ford. “Semiclassical gravity theory and quantum fluctua-
tions”. In: Physical Review D 47.10 (1993). arXiv: gr-qc/9304008 [gr-qc].

[34] K. Martel and E. Poisson. “Gravitational perturbations of the Schwarzschild
spacetime: A practical covariant and gauge-invariant formalism”. In: Phys.
Rev. D 71.10 (2005).

[35] P. Meda. “Towards an analytic condition for the Operator Product Expan-
sion”. 2018.

[36] P. Meda, N. Pinamonti, and D. Siemssen. “Existence and uniqueness of solu-
tions of the semiclassical Einstein equation in cosmological models”. In: (2020).
arXiv: 2007.14665 [math-ph].

[37] M. Nakahara. Geometry, Topology and Physics. CRC Press, 2003.

[38] K. Nishijima and M. Okawa. “The Becchi-Rouet-Stora transformation for the
gravitational field”. In: Progress of Theoretical Physics 60.1 (1978).

[39] D. N. Page. “Particle Emission Rates from a Black Hole: Massless Particles
from an Uncharged, Nonrotating Hole”. In: Phys. Rev. D 13 (1976).

[40] D. N. Page. “Particle Emission Rates from a Black Hole. 2. Massless Particles
from a Rotating Hole”. In: Phys. Rev. D 14 (1976).

[41] D. N. Page. “Particle Emission Rates from a Black Hole. 3. Charged Leptons
from a Nonrotating Hole”. In: Phys. Rev. D 16 (1977).

[42] M. J. Pfenning. “Quantization of the Maxwell field in curved spacetimes of
arbitrary dimension”. In: Classical and Quantum Gravity 26.13 (2009). arXiv:
0902.4887 [math-ph].

[43] E. Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics.
Cambridge University Press, 2004.

[44] E. Poisson, A. Pound, and I. Vega. “The motion of point particles in curved
spacetime”. In: Living Reviews in Relativity 14.1 (2011).

[45] K. Rejzner. Perturbative Algebraic Quantum Field Theory. Springer Interna-
tional Publishing, 2016.

[46] M. Schwartz. Quantum Field Theory and the Standard Model. Cambridge Uni-
versity Press, 2013.

[47] D. Siemssen. “The semiclassical Einstein equation on cosmological spacetimes”.
PhD thesis. 2015. arXiv: 1503.01826 [math-ph].

[48] R. M. Wald. General Relativity. The University of Chicago Press, 1984.

[49] R. M. Wald. Quantum Field Theory in Curved Spacetime and Black Hole
Thermodynamics. The University of Chicago Press, 1994.

[50] S. Weinberg. The Quantum Theory of Fields. Vol. 1. Cambridge University
Press, 1995.

125

https://arxiv.org/abs/gr-qc/9304008
https://arxiv.org/abs/2007.14665
https://arxiv.org/abs/0902.4887
https://arxiv.org/abs/1503.01826

	Abstract
	Introduction
	I The geometrical interpretation of black hole evaporation
	Geodesics congruence
	Introduction
	Geometrical and physical preliminaries
	From the Schwarzschild solution to the Kruskal extension
	The Raychaudhuri's equation
	The physical meaning of the expansion parameter
	Geodesics congruence on Kruskal background

	Motivating the perturbative approach


	II Linearized gravity and algebraic quantization
	Classical theory
	Introduction
	Linearization of the Einstein tensor
	Complete and background covariant derivatives
	The linearization of the geometrical quantities

	Equations of motion
	Diffeomorphism and gauge invariance
	Existence and uniqueness of solutions
	The causal propagator
	Degrees of freedom for curved gravitational waves


	Quantum theory
	Introduction
	Quantization and vacuum states, from flat to curved spacetimes. A motivation to the algebraic approach
	Algebraic quantization
	Beyond gauge-invariant observables. A call for ghosts

	BRST quantization
	Quantum states
	Hadamard quasi-free states for linearized gravity
	Hadamard recursion relations
	Taylor expansion around the coinciding point limit
	Wick products and regularization
	Hadamard states and ghost fields

	Recovering Fock space. The GNS construction and particle creation


	III From quantum gravitational radiation to black hole evaporation
	Gravitational evaporation of a Schwarzschild black hole
	Introduction
	Regularization of the stress-energy tensor
	Renormalization of the stress-energy tensor
	Trace anomaly and black hole evaporation
	From quantum effects on the horizon to Hawking radiation
	Black hole evaporation from a scalar field



	Conclusions
	Appendices
	Review of the free scalar theory
	Classical theory
	Fundamental solutions of the Einstein-Klein-Gordon equation
	Explicit construction of the causal propagator in Minkowski background
	Explicit construction of the causal propagator in Schwarzschild background

	Quantum theory

	The geometrical approach
	Perturbations and geodesics
	Perturbations and the squared shear tensor


	References

